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Abstract

We study exploration under uncertainty and show how access to data on past attempts can paradox-
ically hinder breakthrough discovery. We develop a model of the “streetlight effect” demonstrating
that when data highlights attractive but ultimately suboptimal projects, it can narrow exploration
and suppress innovation. In a laboratory experiment, we find that revealing the value of an entic-
ing project lowers payoffs and reduces breakthrough discoveries. This drop stems from increased
free-riding behavior, which crowds out the generation of new data. We validate our theory in the
context of scientific research into the genetic origins of human diseases. To identify the causal
impact of past data, we use an instrumental variable that leverages exogenous genetic overlaps
between humans and laboratory mice, which reduces research costs for specific genes and leads
to prioritized data collection about them. We find that diseases with early evidence of promising
genetic targets are 16 percentage points less likely to yield breakthroughs than those where early
efforts failed. While competition attenuates the streetlight effect, it does not eliminate it. Our paper
provides the first systematic analysis of this phenomenon, outlining the conditions under which
data leads agents to look under the lamppost rather than engage in socially beneficial exploration.
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1 Introduction

A central challenge in medical research is identifying the genetic drivers of human disease from
over 19,000 potential gene candidates. Puzzlingly, more than two decades after the Human Genome
Project mapped all human genes, the genetic landscape remains relatively underexplored (Edwards
etal., 2011). Fewer than 10% of genes have been targeted by approved drugs, despite recognition that
many less-studied genes may offer better therapeutic opportunities (Stoeger et al., 2018; Gates et al.,
2021). Similar patterns appear in other domains, such as venture capital and industrial R&D, where
agents should have strong incentives to search broadly, and yet, collective exploration appears limited
and potentially valuable options remain neglected. While this underexploration has been noted in
policy discussions, it remains under-theorized in formal economic terms. Understanding its drivers
is critical in an era of apparent diminishing returns to research effort (Gordon, 2016; Bloom et al.,
2020). Whether these trends reflect intrinsic limits to innovation or a narrowly focused search shaped

by innovators’ incentive structures remains an open question.

To shed light on this issue, we start by observing that innovative search rarely begins on a blank
slate. For instance, a scientist studying a disease typically draws on data from past experiments before
selecting a genetic target. We develop a framework to understand how such data shapes the direction
of future exploration. Our thinking is motivated by the parable of the streetlight effect, where agents
disproportionately focus their search in areas with readily available data rather than allocating effort
based on scientific theory, market potential, or policy relevance. In our simple model, we show how
information on past discoveries can narrow search and, paradoxically, reduce both individual and social
returns. This runs counter to the conventional view that accurate data should improve outcomes by
reducing uncertainty and making exploration more efficient. Our paper reconciles these perspectives
by studying how the streetlight effect can emerge in exploratory search among rational agents and

identifying the conditions under which greater data availability may hinder rather than help innovation.

We develop a simplified multi-armed bandit model amenable to experimental and empirical testing.
Agents choose among risky projects over two periods. Projects can be of low, medium, or high
value, but their quality is revealed only through exploration. In each period, the decision-maker
uses existing information to choose between investing in a previously explored project or taking a
risk by exploring a new one. Exploration costs are borne privately, but the resulting data become
publicly available. Within this setup, we examine how providing data on the value of one opportunity

influences exploration choices. Our central result is that the impact of data hinges on the type of



project illuminated: information about a medium-value project can reduce both individual and group

payoffs relative to having data on a low-value project or even no data at all.

The intuition behind our result is that when the medium-value project exceeds the expected return
from exploring riskier alternatives, it becomes individually rational for agents to pursue the option
highlighted by the data. Since this logic applies to all agents, it induces herding behavior: data
reduces uncertainty but also narrows the direction of follow-on investment, collectively suppressing
exploration that would result in new data generation. As aresult, even rational agents may underexplore
due to free riding on the informational externalities of others. Our baseline model, where followers
receive the same payoff as initial innovators, reflects settings like science and technology, where
knowledge is partially non-excludable (Aghion et al., 2008; Hill and Stein, 2025b; Krieger, 2021).
When we introduce competition by reducing the rewards for follow-on innovators, the effect persists
under moderate rivalry but weakens significantly as competition intensifies. Thus, while competitive
pressures can undermine innovation quality through racing dynamics (Hill and Stein, 2025a), their

absence may discourage exploration altogether due to the streetlight effect.

Next, we implement an online laboratory experiment to test whether our theoretical predictions
hold with human participants. Groups of players take part in a two-period game involving strategic
exploration. In the baseline condition, players sequentially select from five unknown options randomly
drawn from a known payoff distribution. In the first period, they choose one project without immediate
feedback; in the second, they observe all first-round payoffs before selecting again. Payoffs are non-
rival and cumulative. We then run the same game but provide players with information on one
project—either low, medium, or high in value. The results align with our theory: revealing data on
the medium-value project reduces group payofts by 5% and the likelihood of finding the best outcome
by 56%%, relative to the no-data baseline. Information on low-value projects has no significant effects,
while data on high-value projects improve outcomes. We also vary the degree of payoff rivalry and

find that the streetlight effect persists under moderate rivalry but diminishes in magnitude.

While our theoretical and laboratory results are intriguing, it is unclear how extensively the streetlight
effect shapes real-world innovation. Therefore, we return to our opening example of scientists looking
for disease-related genes to employ as drug targets. Searching for the genetic roots of human diseases
closely mirrors our theoretical setup: researchers face over 19,000 protein-coding genes, and pin-
pointing the right targets involves individually risky exploration that can yield large payoffs for drug

development. Itis also a collective endeavor, with scientists learning from one another and drawing on



data from published findings. For instance, consider Tangier disease, a rare condition characterized by
extremely low levels of HDL cholesterol in the blood. Decades of research had focused on genes that
early data suggested as moderately promising, but unlikely to lead to therapeutic breakthroughs—until
a scientist definitely linked the disease to mutations in the ABCA1 gene. We leverage these parallels to

examine whether dynamics akin to the streetlight effect might steer scientists away from discoveries.

We leverage data from DisGeNET, a bibliographic database that links scientific publications to the
specific diseases and genes they investigate. Each gene-disease combination is assigned a normalized
score reflecting the strength of the supporting scientific evidence, which we use to classify associations
as low, medium, or high in scientific value. Our dataset covers genetic discoveries for 3,864 diseases
between 1980 and 2019. We use this data to examine how the scientific promise of early discoveries—
specifically those made before 2000—shapes subsequent innovation at the disease level. The main
analysis cross-sectionally explores the implications of our model using careful controls for disease
type and total research effort received. Since the distribution of past data is unlikely to be random,
we also employ a complementary identification strategy. We use an instrumental variables approach
that exploits variation in genetic similarity between human and mouse genes. Research on a human
gene is less costly when scientists can study the same gene in laboratory mice, so genes shared across
species tend to be explored earlier (Stoeger et al., 2018). However, diseases differ in the likelihood
that such shared genes are of high scientific value. This variation creates quasi-random differences in

early data, which we use to instrument for the promise of initial discovery and estimate causal effects.

Our results show that disease areas with promising but suboptimal genes discovered prior to 2000
are 16 percentage points less likely to report a major breakthrough afterward, compared to diseases
where all earlier data unveiled low promise targets. In practical terms, discovering a medium-value
genetic target delays a breakthrough by an average of 2.8 years, roughly 14% longer than the sample
mean of 20.2 years. These findings are confirmed by our instrumental variable framework. Event
study estimates show a sharp decline in the number of new genes explored following a medium-value
discovery, with no evidence of pre-trends. Consistent with our theory, the mechanism seems to be
that early medium-value discoveries reduce the diversity of follow-on research, narrowing exploration
and lowering the likelihood of identifying high-impact gene-disease associations. Also in line with
our model, we find that the streetlight effect is muted in disease areas with greater competition. Taken
together, the empirical evidence from the context of genetic research offers striking support for our

theoretical predictions.



Our three-part study contributes to several strands of research. First, we add to a growing literature on
how data is generated and how it shapes economic outcomes (Bergemann and Bonatti, 2019; Bessen
et al., 2022; Farboodi and Veldkamp, 2020; Jones and Tonetti, 2020). Rather than treating data as a
homogeneous commodity, we show that the nature of the data itself (specifically what it illuminates
or omits) shapes agents’ exploration choices. While our findings intersect with work on data as a
public good (e.g., Nagaraj and Tranchero, 2024), they also speak more broadly to information that
provides signals on the value of uncertain projects. Notably, our results emerge in a context where
we operationalized data as instrumental information, i.e., unbiased and directly payoff-relevant. Our
results could be even starker if data were imprecise, biased, or uninformative (Henrich et al., 2010;
Cao et al., 2024). Beyond this, we propose a novel mechanism by which data can hinder exploration:
by leading agents to implicitly coordinate on certain but dominated projects, thus crowding out new

data generation to the detriment of collective outcomes.

Second, we contribute to the literature on experimentation and social learning (Bolton and Harris,
1999; Keller et al., 2005; Klein and Rady, 2011; Horner et al., 2022). We build on recent experimental
work examining behavior under strategic interdependence and informational externalities (Boyce
et al., 2016; Hoelzemann and Klein, 2021, 2025). Relative to the commonly studied single-agent
bandit problem (Bergemann and Valimaki, 2008), we show how informational spillovers in collective
experimentation can create free-rider problems that endogenously limit aggregate data generation
and dynamically lower payoffs.! We further demonstrate that this mechanism aligns with empirical
patterns in scientific research on disease-causing genes (Gates et al., 2021; Edwards et al., 2011;

Haynes et al., 2018), illustrating how our framework helps explain real-world search dynamics.

Finally, we contribute to the innovation search literature that examines what drives risky exploration
among innovators (March, 1991; Levinthal, 1997; Manso, 2011; Azoulay et al., 2011; Ederer and
Manso, 2013; Henry et al., 2022; Arora et al., 2025). We highlight the role of the information
environment in driving underexploration. We also build on research exploring how different types of
data influence experimentation under technological uncertainty (Ewens et al., 2018; Krieger, 2021).
In particular, we show how data might have counterintuitive effects in search, offering a less sanguine
outlook for how innovation will be shaped in the age of big data and AI (Agrawal et al., 2024;

Cockburn et al., 2019; Kim, 2023). Our evidence on disease-relevant genetic discovery adds to

'A related literature in computer science examines rule-based bandit learning, where a single decision-maker follows fixed
decision rules (Vermorel and Mohri, 2005). In contrast, the welfare losses we document arise from incentive misalignment
between individually and socially optimal behavior, rather than from bounded rationality.



prior work examining how databases shape scientific productivity in the biomedical field (Kao, 2024;

Williams, 2013; Tranchero, 2025).

The remainder of the paper proceeds as follows. Section 2 provides an overview of the theoretical
framework. Section 3 describes the laboratory experiment. Sections 4 and 5 present the empirical

analysis in the context of genetic research. Section 6 concludes.

2 Theoretical Framework

Setup. There are N agents engaged in a search to maximize their individual payoffs, choosing from
A projects of initially unknown value, with N > A. Project payoffs are independent and fall into
one of three categories: with probability p;, a project yields a low payoff (L); with probability py,,
a medium payoff (M); and with probability py, a high payoft (H), where 0 < L < M < H and
pr, + oy + py = 1. While agents know this distribution in advance, they have no prior information
about the specific payoff of any given project. Each agent lives for two periods, is risk-neutral, and
discounts future payoffs at zero. Agents cannot communicate directly. This setup reflects real-world
environments in which individuals face a set of unknown opportunities, where valuable projects are

rare but highly rewarding (Kerr et al., 2014; Manso, 2016).

Dynamics. In each period, the N agents choose projects sequentially in a random order. While they
can observe the choices made by earlier movers, they do not yet see the payoffs associated with those
choices. Once all agents have selected a project, the payoffs of the chosen projects are revealed to
everyone, marking the end of period 1. In period 2, the process repeats with the same order. This time,
agents know the payoffs of previously explored projects and can choose either a known project or an
unexplored one, whose payoff will again be revealed at the end of the period. Payoffs are cumulative
across the two periods, so agents earn the sum of the values of the projects they choose. Importantly,
payoffs are non-rival, so if multiple agents select the same project, each receives its full value. Unlike
classic payoff externalities in public goods problems, here an agent is affected by others only through
the data their choices produce over time (Hoelzemann and Klein, 2021, 2025). This setup mimics
competitive markets where organizations conduct parallel R&D. Although projects do not directly

compete, the information they generate is valuable to all participants (Krieger, 2021).

Equilibrium without Data. We begin by considering the equilibrium in a setting where no data
about project payoffs is available before the game begins. At the start of period 1, all projects offer

the same expected payoff based on the known probability distribution. The sequential structure of
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the game leads agents to choose different projects to generate more data that can guide decisions in
period 2. Since N > A, agents can implicitly coordinate to explore all projects, so the highest payoff
is identified before the second period begins. This means that each agent earns the expected value of a
random draw in period 1, followed by the highest available payoff in period 2. The probability that the
A A,

best discovered project has payoff L is p?, payoff M is (1 —pg)* — p7, and payoff H is 1 — (1 —py

The collective expected payoff and the likelihood of discovering a high-value project are as follows:

[Group Payoft] N|(pL +pf)L + (pamr + (1 — pH)A — pf‘)]\/[ +(pg+1—-(1- pH)A)H] (1
[Group Breakthrough] 1 — (1 — py)* )

Equilibrium with Data on L or H Projects. We now compare the setup above to a scenario where
the payoff of one project is publicly revealed at the start of the game. The effect of this data depends
on the value of the disclosed project. If the revealed project has a payoff of H, all agents immediately
coordinate on it, each earning 2H, and the group achieves the maximum total payoff of 2H - N. The
probability of a breakthrough is 1, showing how data can lead directly to the best possible outcome
by eliminating uncertainty. If, instead, the revealed project has a payoff of L, agents simply avoid that
option, and they are back to the original setup with one fewer low-value project. In this case, the group’s
expected payoffis N[(p, +p{" ™)L+ (par+ (1 —pa) A = pI )M + (prr +1— (1—pyr) V) H],

(A=1) These outcomes are similar to the no-data

and the probability of a breakthroughis 1 — (1 — py)
case and converge to it as A — oco. In other words, when a low-payoff project is revealed and the

search space is large enough, there is still dispersed exploration.

Equilibrium with Data on M project. What is arguably more interesting, and so far understudied,
is the intermediate case where a medium-value project is revealed. Here, a non-empty parameter
space exists in which data can be detrimental due to the streetlight effect. This arises when the payoff
from choosing M is attractive enough relative to exploring other, unknown-value projects. If the loss
from exploration, given by M — (pr L + pyyM + py H), exceeds the potential gain from exploration,
pu(H — M), then all agents choose the medium project in equilibrium.? This leads to the following

condition:
Assumption 1 (“Medium Project is Good Enough”).

L +pu2H
M > Pt PHEAE 3)
2—pr—2pm
2Suppose there was an equilibrium where some agents selected other projects. By backward induction, the last such agent
would strictly prefer the medium project under this condition.




Assumption 1 ensures that selecting the medium project dominates searching for a high-value one.
Rational agents choose it in both periods, yielding an expected group payoft of 2/ - N. However,
when M is not too large relative to L and H, we can show—perhaps counterintuitively—that payoffs
with data are actually lower than those with no data. More formally, we introduce:

Proposition 1 (“Group Payoft with Data on Medium Project”). Under Assumption 1 and if

(pr +p L+ (pg +1— (1 — py)*)H

M <
2—(1—pp)* +p} —pu

4)
the group payoff without data is higher than when a medium project is revealed.

Proof. We need to show that the expected group payoff without data exceeds the expected group payoff
whenever an M project is revealed upfront. This is true if N[(pr, +p7) L+ (par+ (1 —pr )t —pd) M +
(pr +1— (1 — py)?)H] > 2M - N, which is equivalent to the condition in the proposition. |

The fact that the medium option offers high individual payoffs does not guarantee it is socially optimal.
On the contrary, it can lure agents into avoiding exploration. The known option is tempting when
the individual odds of finding the high-value project are low, but at the cost of hurting collective
welfare. What rational agents fail to account for are the information externalities created by their own
experimentation, even when unsuccessful. This leads to the following two results:

Proposition 2 (“Exploration with Data on Medium Project”). If uli is defined as the unmapped share

of projects chosen in period 1 given data i, then under Assumption 1, the following weak inequalities
hold: p|H < p|M < p|L < pl0

Proof. The proof directly derives from our preceding discussion. If H is revealed, agents will choose
that project, so u = 0. If M is appealing enough, agents forfeit exploration and only choose the
revealed project, so 1 = 0. If no data is provided or L is revealed, then agents explore all remaining
unknown options in period 1, so o = 1. [

Proposition 3 (“Breakthrough with Data on Medium Project”). If P(H |i) is defined as the conditional
probability of discovering H given data 1, then under Assumption 1, the following strict inequality
holds: P(H|M) < P(H|i) wherei € {0, L, H}

Proof. If M is appealing enough, agents never achieve a breakthrough, i.e., never discover H, so
P(H|M) = 0. If no data is provided or L is revealed ex ante, then agents explore all remaining
unknown options in period 1, and the probability that H is discovered at all is (1 — (1 — py)?) and
(1 — (1 — pg)A=Y) respectively, which are both strictly greater than 0. The statement is trivially true
whenever H is revealed. |

The streetlight effect arises when the medium payoff is tempting enough for the individual, yet

exploration still holds social value—that is, when Assumption 1 and Equation (4) both hold. This
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requires a skewed payoff distribution. If the distribution of payoffs was symmetric, the expected
value of an unknown draw would equal M, making exploration risk-free with a potential upside of
pr(H — M). In that case, Assumption 1 would be violated, and the streetlight equilibrium would
not emerge. However, the effect also vanishes under extreme payoff skewness. If the breakthrough is
too rare (very small py), the expected social value of exploration falls below M, violating Equation
(4). If the breakthrough is too common (very large pg), the private upside py(H — M) becomes
very attractive, breaking Assumption 1. Thus, the streetlight equilibrium appears only under moderate

skewness of the payoff distribution.?

The Role of Competition. Our theoretical framework assumes non-rivalry in payoffs, meaning
that agents still earn the full reward even if they were not the first to choose a project. While a
simplification, this assumption fits reasonably well in fields like scientific research. For instance, Hill
and Stein (2025b) find that follow-on projects receive about 79% as many citations as similar projects
that were first to the finding. Scientific innovation is often non-rivalrous because early discoveries
generate new opportunities for others in the same domain. Still, in many other settings, one agent’s
choice can largely diminish the value of that option for others. To capture this, we now introduce
rivalry into the model. Specifically, we assume that a project’s payoff falls to zero when the number

N of agents already selecting that project is greater than N. This adjustment makes individual payoffs

sensitive to competition, with smaller N reflecting stronger payoff rivalry. The rest of the model

remains unchanged. The results below show how this affects exploration and discovery:

Proposition 4 (“Exploration under Rivalry”). If payoff rivalry is not extreme (i.e., N > N — A+ 1),
then the original weak inequalities still hold under Assumption 1: p|H < p|lM < p|L < u|f.
Moreover, exploration is increasing in rivalry.

Proof. Without any data, agents still explore all projects in the first period, so uu|() = 1. If L is revealed
ex ante, then agents will explore all the unknown projects in the first period so that u|L = 1. If H
is revealed ex ante, then IV agents will select the mapped project. The remaining N — N agents will
randomly select as many as the remaining A — 1 projects as possible. Therefore, since N — N < A—1,
ulH = JX‘:JIV . Similarly, if M is revealed ex ante, and Assumption 1 holds, then IV agents will select
the mapped project. The remaining N — N agents will randomly select as many as the remaining
A — 1 projects as possible. Since N — N < A — 1, then u|M = Y=F. Now, suppose we increase
rivalry to N — 1. Since N — N < A — 1, when a medium project is revealed, an additional unknown
project is explored, and p|M increases. In the extreme case, when N = 1, the revelation of an M
project has no impact on exploration as agents will explore all remaining unknown options in the first

3For example, the following parameters satisfy Assumption 1 and Equation (4), and thus lead to the outcome where
revealing information about a medium project reduces social welfare and lowers the probability of a breakthrough:
L=0,M=6,H=15,p, =7/10,ppy = 1/10,pyg =2/10,A =5, N = 5.



period. Note this result can be analogously stated in terms of IV (instead of N). Holding N constant,
if we increase the number of agents to N + 1, thenif N — N < A — 1, an additional unknown project
is explored, and p|M increases. |

Proposition 5 (“Breakthroughs under Rivalry”). If payoff rivalry is not extreme (i.e., N > N — A+1),
then the original strict inequality still holds under Assumption 1: P(H|M) < P(H|i) where i €
{0, L, H}. Moreover, breakthrough discoveries are increasing in rivalry.

Proof. The proof follows directly from the analysis above. If no data is provided, then the probability
that H is discovered is still (1 — (1 — py)?). If L is revealed ex ante, then the probability that H
is discovered is still (1 — (1 — py)“~Y). If H is revealed ex ante, then P(H|H) is still trivially
1. If M is revealed ex ante, the probability that H is discovered is (1 — (1 — py)V ) and, since
A—1>N-N, P(H|M) < P(H|L) < P(H|0) < P(H|H). Now, suppose we increase rivalry
to N — 1. Since N — N < A — 1, then an additional unknown project is explored, and P(H|M)
increases. Similar to before, this result can also be stated in terms of /N. Suppose we increase the
number of agents to N + 1. Since N — N < A — 1, then an additional unknown project is explored,
and P(H|M) increases. |

Our key finding is that the streetlight effect persists under modest levels of rivalry but weakens as
rivalry increases. Competition pushes agents to explore more, increasing the likelihood of discovering

a high-value project. This highlights payoff rivalry as a boundary condition for the streetlight effect.

3 Laboratory Experiment: Design and Results

While our simple theoretical framework helps explain the emergence of the streetlight effect, it remains
an open question whether it accurately reflects how agents behave in practice. To explore this, we

conducted an online experiment mirroring exactly the structure of our simplified model.

3.1 Experimental Procedure and Logistics

Participants logged into the experimental platform remotely and were assigned to either the data or no-
data condition in groups of ten. Upon joining, they received detailed written instructions and watched
a mandatory seven-minute video that reiterated the rules and introduced the platform.* Participants
were then required to complete a short quiz as an attention and comprehension test. They also had
continuous access to the instructions and could contact an experimenter via cell phone or Zoom for
support. The experiment consisted of independent “rounds,” each following the structure of our
theoretical framework. Each round had two periods over which payoffs were calculated. Participants

were randomly assigned to groups of five, with groups reshuffled every five rounds. In total, each

4The videos shown to participants are available upon request.
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participant played 20 rounds. At the end of the experiment, we collected demographic information
and measured risk preferences using a monetarily incentivized, upscaled version of the Holt and Laury
task (Holt and Laury, 2002). Final payments included earnings from one randomly selected round, a

show-up fee, and the outcome of the risk elicitation task.

The experiment was programmed using the open-source platform olree (Chen et al., 2016) and
conducted at the Vienna Center for Experimental Economics (VCEE). Participants were recruited
from VCEE’s subject pool via ORSEE (Greiner, 2015), targeting undergraduate and master’s students
who had previously participated in no more than five experiments. Participation was voluntary, and
individuals could withdraw at any time. We ran 18 sessions with a total of 180 participants, ensuring
that no one took part in more than one session. Participants ranged in age from 18 to 52, with an
average age of 24.7 years and a standard deviation of 4.7. All sessions were conducted in December
2024. The experimental task lasted approximately 50 minutes, with additional 10 minutes allocated
for reading instructions, watching the explanatory video, and completing the attention quiz. Average

participant earnings were €15.4, with a standard deviation of €4.6.

3.2 Task Description and Implementation

Participants took on the role of individuals searching for precious gems (Panel A of Figure 1). In each
round, they faced five mountains, each hiding one type of gem that could only be revealed through
exploration. There were three types of gems, differing in rarity and value: topazes (L), rubies (M),
and diamonds (/). While the exact monetary values varied across rounds, diamonds were always
more valuable than rubies, and rubies were always more valuable than topazes. Participants were
informed that topazes appeared with a 60% probability, rubies with 20%, and diamonds with 20%,
though they were not told which gem was hidden behind which mountain. The goal of the game was

to find the most valuable gems, as their value directly determined participants’ earnings.

In addition to displaying the values and distributions of the gems, the interface tracks the current period
and the round number as participants progress through the experiment.> Each group of five players
remains anonymous, and participants cannot interact or communicate directly with one another.

Within each round, players take turns selecting a mountain to explore in a randomly determined order

3The interface also shows the “block” number, which indicates when participant groups are reshuffled. A new block begins
every five rounds, after which players remain in the same group for the next five rounds.

® Although participants are aware that their co-players change every five rounds, they are never able to identify who they
are playing with. When a player selects a mountain, the others see a message such as “one player selected this mountain,”
but never learn who made the choice. See Figure 1 for an illustration.
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that changes every round. A dynamic indicator on the screen highlights when it is their turn to choose.
At the start of each round, no player has private information about the locations of the gems, which are
randomly reassigned each round (but remain fixed between the two periods of a given round). While
waiting for their turn, players can observe which mountains have already been selected. When it is

their turn, they are free to choose the same mountain as someone else or a different one.

In the no-data condition, participants begin by selecting one of five mountains to explore in period 1.
Once all players have made their choices, the gems hidden in the selected mountains are revealed to
everyone, and each player earns the value of the gem from their chosen mountain. In period 2, players
again choose from the same mountains, in the same random order, with gem locations unchanged.
Now, however, they can see the gems uncovered in period 1 and can either stick with their previous
choice or switch to a different mountain. The newly selected mountains are revealed, and their gem
values are added to each player’s payoff. The data condition follows the same structure, with one
key difference: at the start of each round, one mountain is “mapped,” and its gem is revealed to all
participants. This is the only information available at the outset. Panel B of Figure 1 illustrates this
setup. Figure (i) shows the no-data condition, where all mountains are hidden, while Figures (ii),
(iii), and (iv) depict the three possible data scenarios, where the revealed mountain contains a low-,

medium-, or high-value gem. The revealed mountain is selected by a script using a random sequence.

We collected data from a total of 720 rounds. In 120 of these, participants received data revealing
a low-value gem; in 240 rounds, they saw data on a medium-value gem; and in another 120 rounds,
the revealed gem was high-value. In the remaining 240 rounds, no initial data about gem locations
was provided. We determined the proportion of rounds assigned to each treatment condition based on
power calculations. Across the experiment, we used five different combinations of payoff parameters.
Specifically, the values for low, medium, and high-value gems were set to one of the following:

(L, M, H) ={(1,6,11), (1,6,11.5), (2,6,11), (2,6,11.5), (3,7,12)}.

3.3 Results

Group Payoffs. We begin by examining group-level earnings. For each round, we calculate the
maximum possible group payoff and express realized group earnings as a percentage of this value.
This allows us to compare outcomes across rounds, despite variation in the values and distributions
of the low-, medium-, and high-value gems. Panel (i) of Figure 2 plots the average group payoft by
condition, comparing the three data treatments to the no-data baseline. Strikingly, revealing data on a

medium-value project leads to lower group payoffs than all other conditions, including the case where

12



no data is provided. To quantify these differences, we estimate the following OLS specification:

Group Payof fj = o+ fInitial Datay + v X}, + €1, %)

where Group Payof f; denotes the payoff for group j in round k, Initial Datay is a categorical
variable indicating the type of project revealed at the start of the round, and X, is a vector of fixed
effects that accounts for the session, the specific payoff structure, and the round’s position in the
session. Standard errors are clustered at the session level. Column 1 of Table 1 presents the results.
We find that revealing data on a medium-value mountain reduces group payoffs by approximately
5% relative to the no-data condition, consistent with Proposition 1. Providing data on a high-value
mountain increases payofls by 44.5 percentage points. In contrast, revealing a low-value mountain has

no statistically significant effect on group performance.

Group Exploration. Our theoretical framework suggests that partial data on project value can
discourage exploration, effectively crowding out data generation. To test this, our next outcome of
interest is the share of unmapped mountains explored in a round. Panel (ii) of Figure 2 shows that
revealing the location of a medium-value gem significantly reduces exploration. We quantify this
using an OLS specification similar to Equation (5), with the dependent variable defined as the share
of unmapped mountains explored by the group across both periods.” The results in Table 1 show that
revealing a high-value gem eliminates the need for exploration, while revealing a low-value gem has
no measurable effect. Most notably, revealing a medium-value gem decreases the share of mountains
explored by 38.6 percentage points relative to the no-data condition (Column 2). This provides a clear
demonstration of the streetlight effect: data can shift the balance from exploration to exploitation,

ultimately reducing social welfare by leaving participants stuck on a suboptimal outcome.

Group Breakthroughs. The final outcome of interest is the likelihood that participants discover the
high-value option. Panel (iii) of Figure 2 shows that revealing the location of a medium-value gem
significantly lowers the chances of a breakthrough. We quantify this effect using a linear probability
model based on the specification in equation (5), with the dependent variable indicating whether a
group discovers a high-value gem. Since not all rounds contain a diamond, we limit the analysis to
rounds where at least one high-value gem is present. As shown in Column 3 of Table 1, revealing
a medium-value mountain reduces the likelihood of discovering the maximum by 56% compared to
the no-data condition. In contrast, we find no such reduction when the revealed data points to a low-

or high-value gem. Taken together, these results support the predictions of Proposition 3: while data

"Note that there are four unmapped mountains in each of the three data conditions and five in the no-data condition.
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can increase payoffs when it points to the best option, it can also impose substantial societal costs

depending on the underlying payoft structure.

The Impact of Competition. Our theory shows that the presence of payoff competition can reduce
the intensity of the streetlight effect. We test this experimentally by varying N, the number of players
who can choose a mountain before payoffs fall to zero. The results from the baseline case, presented
earlier, implicitly correspond to N = 5, where players can choose without penalty. We then examine
two more conditions: intermediate rivalry (N = 3) and extreme rivalry (N = 1). In the intermediate
case (Panel A, Table 2), the streetlight effect weakens but does not disappear. Revealing the medium
option no longer affects payoffs, but still reduces exploration by roughly 20 percentage points and the
likelihood of a breakthrough by 24.5 percentage points (significant at the 10% level). Revealing the
high option still increases payoffs and reduces exploration, while revealing a low option continues to
have no effect. Under extreme rivalry (Panel B, Table 2), initial data has no significant impact on
payoffs, exploration, or breakthroughs. Consistent with Propositions 4 and 5, the streetlight effect

declines with increased rivalry and disappears when payoff competition is strongest.

4 Empirical Application: The Genetic Roots of Human Diseases

The preceding sections formalized and tested how the streetlight effect can emerge in lab-based search
tasks. We now turn to an empirical application that shows how our framework helps explain real-world

patterns in scientific research.

4.1 Setting

Our application examines biomedical research, focusing on scientists’ efforts to identify genetic
mutations that cause human diseases (see Appendix B for details). Genes carrying causal mutations can
serve as drug targets, substantially improving the chances of developing effective treatments (Nelson
et al., 2015). However, finding breakthrough targets is a complex search problem: there are over
19,000 protein-coding human genes, each potentially a drug target. In practice, scientists must choose
between further investigating known genetic targets or exploring novel candidates. Despite individual
incentives to establish priority in new areas (Bobtcheff et al., 2017; Hill and Stein, 2025a), exploration
across the genetic space has remained surprisingly limited (Edwards et al., 2011). Research continues
to focus on a subset of human genes, a puzzling pattern given widespread recognition that promising

drug targets may lie among less-studied genes (Stoeger et al., 2018). One explanation, echoing the
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streetlight effect, is that earlier data on seemingly promising—but ultimately unproductive—genes has

focused scientists’ efforts away from exploring more valuable alternatives (Haynes et al., 2018).

To illustrate this, consider two examples of genetic disorders described in Figure 3. As noted in the
introduction, research on Tangier disease followed a revealing trajectory. A 1982 study identified
a moderate link to the APOA1 gene, which attracted subsequent attention and diverted exploration
away from alternative candidates. However, Tangier disease is actually caused by mutations in the
ABCAI1 gene, which impair the production of functional HDL-C particles. This genetic target was
only discovered in 1999. In contrast, the search for the cause of Gardner syndrome, a genetic colon
polyposis, unfolded differently. Early investigations yielded only weak associations, prompting a
broader search effort. This eventually led to the discovery of mutations in the APC gene, a tumor
suppressor that plays a central role in controlling cell growth and is strongly linked to the condition.
The APC discovery happened in 1991, eight years before the key breakthrough in Tangier disease,
despite both diseases receiving a similar number of publications. These contrasting case studies
highlight the streetlight effect in action: the disease that initially showed clearer research progress

reached its breakthrough much later.

Building on these cases, we turn to a systematic empirical investigation. Our central proposition is that
early discoveries of moderate promise can narrow scientific focus and slow the identification of true
genetic drivers. In contrast, weaker early findings tend to promote broader exploration and accelerate
discovery. The parallels to our theoretical framework are clear: just as agents in our model search for
valuable projects or participants in the lab look for gems hidden in mountains, scientists navigate a

vast genetic landscape in pursuit of scientific breakthroughs.

4.2 Data

DisGeNET Database. We compile adataset of genetics research from 1980 to 2019 using DisGeNET
(v7.0), a comprehensive database of gene—disease links drawn from curated sources and PubMed-
indexed publications (Pinero et al., 2020; Tranchero, 2025). Because DisGeNET does not include
author information, we supplement it with disambiguated data from Author-ity 2018 (Torvik and
Smalheiser, 2021). Additional details on both data sources are provided in Appendix B. Our analysis
focuses on articles investigating associations between protein-coding genes and diseases, syndromes,
or abnormalities with clear health relevance. For each disease, we record the number of publications
along with information on the novel genetic candidates identified each year. To filter out conditions

unlikely to have a genetic basis, we restrict the sample to diseases with at least 10 publications over
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the study period, but results are fully robust to different cut-offs. The final dataset captures the search

and discovery trajectories of 5,519 diseases over a 40-year span.

Measuring the Scientific Value of Genetic Discoveries. Scientists aim to identify genes of high
scientific value for each disease. Mirroring our theoretical setup, we classify genetic candidates for a
disease into three categories: weak targets (L), middle-value leads ()/), and breakthroughs (/). We
rely on the score provided by DisGeNET for each gene—disease pair, which ranges from 0 to 1 and
summarizes the strength of the available scientific evidence. The score incorporates the supporting
sources weighted by their credibility, with experimental information receiving the greatest weight. We
provide extensive details on the DisGeNET score and its features in Appendix B.3. For interpretability,
we express a gene—disease pair’s scientific value as its percentile within the overall score distribution.
Genes below the 60™ percentile are classified as low value, those between the 60" and 90™ percentiles
as medium value, and those above the 90" percentile as high value. These categories closely align
with real-world indicators of therapeutic relevance: clinical citations, approved patents, and granted

drugs all increase monotonically with our score categories (Appendix Figure B.1).

Data Generated by Past Exploration. Our objective is to assess how the scientific value of known
gene candidates shapes subsequent exploration patterns for a given disease. We build on the idea that
early exploration provides data that scientists can choose to exploit through repeated studies, rather
than search for new candidates. We define the early search window as the period from 1980 to 2000,
which marks the first half of our sample and accounts for just 10% of all publications, during which
scientists began identifying potential gene targets. For each disease, we record the highest-scoring
gene candidate identified during this period, classifying it as low (L), medium (M), or high (H) based
on the categories described above. This captures the genetic targets known to researchers as of 2000.
We then examine how the nature of this early data shapes research activity in the second half of the

sample period (2000-2019). Figure C.1 provides a stylized overview of this empirical setup.

Dependent Variables. We construct a dataset at the disease level to examine how cross-sectional
differences in early data shape subsequent exploration. Our first dependent variable captures whether
scientists identified a gene-disease pair with a high DisGeNET score, corresponding to a breakthrough
discovery at the group level in our experimental setup. The second dependent variable measures the
number of new gene candidates explored after the early search window, allowing us to assess how
the scientific promise of early data constrains the diversity of follow-on research. To account for

variation in research intensity across diseases, we divide the number of new genes explored by the

16



number of publications. In practice, this variable captures changes in the propensity to explore new
genes for a given disease. The third dependent variable measures the number of years required to
reach a breakthrough, defined as the number of years since 1980 (the start of our sample period). This
group-level delay offers a concrete indication of the societal cost imposed by the streetlight effect. We
include the total number of publications focused on each disease as a control to account for variation
in research effort. In addition, DisGeNET assigns each condition a set of disease classes based on
the MeSH vocabulary, and our data include 536 unique disease class combinations. Disease class
captures features such as whether a condition is congenital or acquired. We include disease-class fixed
effects to control for unobserved characteristics shared by similar diseases, and cluster standard errors

at the disease-class level to account for correlations across related conditions.

Summary Statistics. Table 3 reports descriptive statistics for the 5,519 diseases in our sample. By
the year 2000, 10% of diseases show early data pointing to an L target, 32% to an M target, and the
remainder to an H target. The H category is less informative for our purposes, as a breakthrough
has already occurred in the early exploration window.® On average, it takes 21.8 years to identify
a high-value genetic target for a disease by the end of the sample period. Each disease is linked to
approximately 295 publications, involving 186 unique principal investigators (PIs), and associated

with the discovery of about 130 genes.

S Empirical Results
5.1 Cross-Sectional Evidence

We begin by examining how the likelihood of a breakthrough varies with early scientific data, com-
paring outcomes for diseases with information only on low-value genes to those with data on genes of
medium or high value. To do this, we estimate the following cross-sectional OLS specification at the
disease level:

Breakthrough (0/1); = a+ B(Max Found : X;) + vX,; + €, 6)
where Breakthrough (0/1); equals 1 if at least one publication discovers a genetic target with a high
DisGeNET score for disease ¢, and 0 otherwise. The variable (Max Found : X;) is a categorical
indicator for the highest DisGeNET score identified in the early search window, classified as L, M,
or H. X, is a vector of controls that includes the number of publications on the disease, as a proxy

for search efforts, and fixed effects for disease class, taking into account broader genetic similarities

8Note that we do not include a “no data” condition here, as most diseases had seen some level of investment before 2000.
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between related diseases. The results are reported in Panel A of Table 4. While early data on a
high-value genetic target mechanically increases the likelihood of a breakthrough, the more interesting
comparison lies with medium-value targets. Diseases with early data on medium-value genes are
11 percentage points less likely to experience a breakthrough than those with only low-value initial

findings.

One possible explanation for this counterintuitive finding is that the early discovery of a promising—
but ultimately suboptimal—genetic target diverts attention from the search for a true breakthrough.
Column 2 of Table 4 presents evidence consistent with this mechanism. Using the same specification
as in Equation (6), we find that early data on a medium-value target reduces exploration of new genes
by almost 20 percentage points. Notably, this drop is nearly half as large as the effect of an early
breakthrough itself. Column 3 quantifies the real-world cost of reduced exploration. Identifying a
medium-value target early on delays the eventual breakthrough by 1.7 years, which corresponds to an

increase of 8% relative to the sample mean of 21.7 years.

Our theoretical framework and behavioral experiments suggest that the streetlight effect weakens with
increasing rivalry. Does this prediction hold in our empirical setting? In our experiments, we can
directly manipulate the threshold N, which represents the number of individuals who can benefit
from a project before the payoff erodes. Here, we take N as fixed, assuming it is broadly similar
across diseases due to common scientific norms of credit allocation. Still, our comparative statics in
Propositions 4 and 5 show that even with a constant N, increasing N (i.e., the number of competitors)
should reduce the streetlight effect. This insight allows us to proxy rivalry empirically using the
number of scientists who have studied each disease, echoing recent work on competition in science
(Hill and Stein, 2025a). We classify diseases as more or less competitive based on the number of
active PIs. Using our cross-sectional specification from Equation (6), we run split-sample regressions

for diseases in the top and bottom quartiles of this distribution.

The results of this analysis are presented in Panel B of Table 4. In Column 1, where we restrict the
sample to diseases with fewer scientists, we find that early data on a medium-value target reduces the
likelihood of a breakthrough by 17 percentage points. By contrast, for diseases with more competition
(Column 2), there is no significant change in breakthrough likelihood. A similar pattern holds for
exploration activity: early data reduces exploration of new genes by 20% relative to the sample mean
in diseases with fewer scientists (Column 3), but this effect disappears when more PIs are engaged

in the search for genetic roots (Column 4). Finally, early data on a tempting genetic target increases

18



the time to breakthrough in diseases with fewer researchers involved (Column 5), while the effect is
not significant in more competitive settings (Column 6). Taken together, these results suggest that

competition helps offset the streetlight effect that uneven data availability might create.

5.2 Instrumental Variables (IV)

The empirical patterns are consistent with our theorization of the streetlight effect and echo concerns
raised by scientists about the lack of exploration in this field (Haynes et al., 2018; Stoeger et al.,
2018). However, issues about causality remain, since the generation of early data reflects scientists’
endogenous exploration choices. As a first step, we note that including fixed effects for disease classes
helps control for unobserved characteristics shared across related diseases. Yet, certain disease-specific
features could still correlate with the nature and volume of early scientific data, potentially driving our

results.

To help rule out this concern and bolster the causal interpretation of our findings, we leverage the
fact that many human genes have orthologous counterparts—that is, genes in other species that
share a common ancestor gene and thus retain similar biological sequences and functions. Scientists
frequently use animals as models to experimentally study human orthologs at lower cost and with
fewer ethical constraints (Li et al., 2017). In particular, genes with orthologs in the commonly used
laboratory mice tend to receive more attention from scientists out of sheer convenience (Stoeger
et al., 2018). We retrieve information on gene orthology from the National Center for Biotechnology
Information (NCBI). In our data, human genes with mouse orthologs appear 2.6 years earlier in
scientific publications and are about 27% more likely to have been explored before the year 2000
(Figure 4, Panel A). This confirms that researchers prioritize these genes, and within a disease,
information about them emerges earlier (Appendix Table C.1). Yet, nothing ensures that orthologs are
equally relevant for every disease. Since the strength of associations between these mouse-overlapping
genes and a given disease is effectively exogenous, delays stemming from focusing on medium-value

orthologs can be attributed to convenience rather than to unobserved disease characteristics.

Building on this intuition, we construct an instrumental variable based on the distribution of orthol-
ogous gene candidates. For each disease, we measure the share of orthologous genes classified as
medium-value (M) candidates (see Appendix Figure C.2 for a stylized visualization). If the orthol-
ogous gene pool contains more medium-value targets for a particular disease, scientists should be
more likely to encounter a medium-value discovery early in their exploration. Indeed, our instrument

exogenously shifts the probability of identifying a medium-value gene, as confirmed by a strong
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first-stage regression (Figure 4, Panel B). For example, Tangier Disease has 27 gene candidates with
mouse orthologs, 7 of which are medium-value (M sharerqngier = 26%); APAOL, an M ortholog, was
indeed discovered early, in 1982. In contrast, only 2 of Gardner Syndrome’s 23 orthologous genes are
of medium-value (M sharegqraner = 8%), leading scientists to identify the causal APC gene without
distraction by medium-value discoveries. Figure C.3 supports this logic across our broader sample
of diseases, showing reduced-form evidence linking the M share of ortholog genes to breakthrough

likelihood, exploration extent, and discovery delay.

The results of our IV analysis are presented in Table 5. We replicate the same three cross-sectional
specifications as before, but now instrument for (Max Found : M) using the share of ortholog genes
corresponding to an M target. In this setup, the 2SLS coeflicients can be interpreted as a local average
treatment effect (LATE), capturing the effect in the subset of diseases for which the instrument shifts
the likelihood of identifying an M target. Column 1 presents the first stage of our IV, showing that
the M share of ortholog genes is strongly associated with the highest-scoring gene association being
M, with an F-statistic of 154. Columns 2 through 4 report the second-stage results for our three
main outcomes. Consistent with our earlier findings, we find that early data on a medium-value target
reduces the likelihood of a breakthrough (Column 2), decreases the number of new genes explored
(Column 3), and increases the delay to a breakthrough (Column 4). This analysis confirms that the

patterns observed in genetics stem from the streetlight effect created by early data (Haynes et al., 2018).

5.3 Exploration Dynamics

Next, we offer additional evidence to bolster confidence in the mechanism proposed by our theory. If
early data on medium-value genetic targets indeed crowds out exploration, we should see a drop in
research efforts aimed at discovering new genes in the years following a medium-value gene. To test
this idea, we construct a panel at the disease-year level. While our earlier analyses relied on cross-
sectional estimates at the disease level, this alternative approach allows us to track how exploration
patterns change over time. For each disease, we count the number of new genes investigated in a
given year, along with the total number of publications as a proxy for research effort. Appendix Table
C.2 presents descriptive statistics at the disease-year level. On average, each disease receives 7.4
publications per year focused on its genetic underpinnings, typically leading to the exploration of 3.3

new genes.
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We then estimate the following event study specification using OLS:

Group Exploration;; = o+ Z BeMedium Gene; x 1(z) + vX ;4 + €4, @)
z

where Group Exploration;, denotes the number of new genes explored for disease ¢ in year ¢,
normalized by the number of articles published. Medium Gene; X 1(z) the number of years that have
elapsed since a medium-value association was first discovered for disease 4, and X, ; is a vector of
controls that include disease fixed effects, year fixed effects, and the number of papers published each
year. For the small number of diseases with multiple medium-value genes, we define the time lags
relative to the discovery of the first one. To account for the mechanical uptick in exploration during the
year of discovery, we exclude the focal gene and its corresponding publication from our calculations,

but our results are robust to their inclusion.

Panel A of Figure 5 plots the regression coefficients. The results show an immediate, significant, and
persistent drop in exploration following the discovery of a medium-value genetic target. Reassuringly,
there is no evidence of pre-trends, suggesting that the observed decline is indeed driven by the discovery
itself. In Panel B, we re-estimate the specification in Equation (7) and find a similar pattern: research
efforts on new genes also decline after the discovery of a high-value target. Appendix Table C.3
reports the corresponding estimates from a difference-in-differences specification. We find that yearly
exploration of new genes drops by 24% relative to the sample mean after a medium-value target is
identified. The effect is even larger following the discovery of a high-value target, with exploration
falling by around 35%. Results are consistent using alternative difference-in-differences estimators
(Appendix Table C.4). Taken together with the IV results, these estimates offer additional support for

the predictions of our theoretical framework.

5.4 Robustness

We assess the robustness of our results by relaxing several key choices in the main specification. First,
while we excluded diseases with very few publications to focus on those more likely to have genetic
roots, our results hold under alternative sample cut-offs (Appendix Table C.5). Similarly, excluding
the top 1% of most-studied diseases does not change the findings (Appendix Table C.6). Second,
we defined payoffs based on percentiles of the DisGeNET score. While our definitions map into
real-world outcomes (Appendix Figure B.1), changing the percentiles used to define an )M genetic
discovery does not affect our results (Appendix Tables C.7 and C.8). Third, redefining the early search
window yields similar results (Appendix Table C.9). Appendix Table C.10 shows robustness to a
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disease-specific definition, where “early” refers to the years before the first 10% of publications for
each disease. Finally, the findings remain stable under alternative windows for tracking exploration

dynamics following an M discovery (Appendix Table C.11).

One potential concern is that focusing on a medium-value gene could be a rational choice when there
is ambiguity about whether a high-value target exists at all. This might partly explain the drop in
exploration following the discovery of an M. To address this, we draw on the genetic relationships
between diseases. The MeSH vocabulary defines hierarchical linkages between diseases based on
shared etiology, biological mechanisms, and other biomedical features. Using this classification, we
restrict the analysis to diseases closely related to conditions where a breakthrough (H) has already
occurred. In these cases, the existence of valuable targets is less ambiguous, as related diseases often
share underlying biological processes.” Re-estimating the event study specification in Equation (7),
we find consistent results: as shown in Appendix Figure C.4 and Table C.12, data on a medium-value

gene still dampens exploration, even within this subset of diseases.

Relatedly, it is possible that our cross-sectional results reflect the absence of valuable genetic targets,
rather than suboptimal exploration behavior. To test this, we narrow our analysis to diseases that had
a high-value genetic association identified by 2019. These results are presented in Appendix Table
C.13. While this restriction prevents us from estimating effects on group breakthroughs, we still
observe longer delays for diseases where early data pointed to an M -value target. We find no change
in exploration over the full sample period, likely because all diseases in this sample eventually saw
a breakthrough and, by definition, received some level of exploration. Still, we detect a significant

decline in exploration activity in the years immediately following the early M discovery.

Finally, one reason scientists might continue to focus on )M candidates is the prospect of positive
spillovers that could benefit research on related diseases. These spillovers could come from comple-
mentary insights, such as new methods or a deeper understanding of protein function and genetics. If
genes classified as M in one disease often end up as H candidates in related diseases, then continued
focus on them might be rational. To evaluate this possibility, we test whether a gene is more likely
to be a breakthrough for a given disease when it is classified as an M in a related disease. The

results are presented in Panel A of Appendix Table C.14. The effect is small and only slightly larger

For instance, Ulcerative Colitis [MeSH tree code: C06.405.469.432.249] and Crohn’s Disease [MeSH tree code:
C06.405.469.432.500] are “sibling” sub-branches of the “parent” disease Inflammatory Bowel Diseases [MeSH tree
code: C06.405.469.432]. Once a gene is identified as a high-value target for Crohn’s there is a higher chance that a
breakthrough exists for Ulcerative Colitis (which could either be the same gene or another one).
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than when the gene is classified as L, and much smaller than when it is classified as A in a sibling
disease. By contrast, as Panel B shows, genes classified as M for one disease are likely to remain
M in related diseases. This suggests that spillovers are limited in scope and are unlikely to justify

continued attention to M candidates.

6 Conclusion

In this paper, we examine the paradoxical role of data provision in shaping innovative search, a dynamic
we refer to as the “streetlight effect.” Our theoretical model shows that access to partial data on past
successes can narrow the search space and trigger free-riding, ultimately reducing the diversity of
exploration and hampering breakthrough discoveries. This prediction is supported by our empirical
findings. In our lab experiments, revealing data on a medium-value project lowered group payofts
by 5% and reduced the likelihood of a breakthrough by 56% compared to the no-data condition. We
extend this analysis using observational data from scientific research on the genes responsible for
human diseases. Our approach includes multiple research designs, including an instrumental variable
strategy based on exogenous genetic overlaps between human and mouse genes. The results show
that diseases with early data on a middle-value target are, on average, 16 percentage points less likely
to yield breakthroughs, with discoveries delayed by nearly three years due to reduced exploration.
We also find that payoftf competition moderates these effects by lowering the attractiveness of known
options and breaking the cycle of low data generation. Taken together, our theoretical, experimental,

and empirical evidence highlights how the streetlight effect shapes the direction of innovative search.

Our findings challenge the conventional belief that more data is always better for innovation. When data
is incomplete and narrowly focused, as in our setting, it can unintentionally steer researchers toward
suboptimal projects. Our evidence from genetics highlights how this pattern can emerge endogenously
in decentralized and parallel exploration endeavors such as scientific research. This has important
implications for policymakers and funding agencies involved in data creation and dissemination, whose
goal should be to provide broad “floodlights” that illuminate the entire search space. Our findings
reinforce the value of publicly funded, comprehensive mapping initiatives such as the Human Genome
Project (Williams, 2013) and Landsat satellite imagery (Nagaraj, 2022), which serve as shared data
infrastructure for scientific discovery. They also highlight the importance of strengthening institutions
such as the U.S. Census Bureau’s FSRDCs (Nagaraj and Tranchero, 2024), which enable research

access to existing large-scale datasets at relatively low public cost.
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For individual innovators, the key takeaway is that past data should be treated as a strategic input
rather than followed blindly. In environments where data is uneven or incomplete, setting aside
existing information can promote breakthrough innovation. Our findings lend support to corporate
practices like skunkworks, where firms intentionally restrict the internal diffusion of early R&D
results. They also underscore the value of delaying the release of intermediate project information
unless there is strong evidence that the project represents a high-value lead (Boudreau and Lakhani,
2015). More broadly, as innovation and decision-making become increasingly data-driven, it is
important to recognize that technologies like Al are often trained on uneven historical data. This
can inadvertently narrow the scope of exploration by reproducing the streetlight effect (Kim, 2023).
While existing work has focused on the risk of false positives in Al predictions (Tranchero, 2024), our
evidence suggests that the risk of false negatives in data-driven innovation may be even greater. At
the same time, Al enables initiatives like AlphaFold, which provide broad and unfiltered predictions
supporting discovery beyond the bounds of known data. Understanding the nuanced implications of

Al for innovation is an exciting direction for future research.

While our study draws strength from combining theoretical modeling, laboratory experimentation, and
empirical analysis, there remain several opportunities for further improvement. One direction would
be to extend the current two-period framework into a continuous learning model, which would better
capture the iterative and dynamic nature of innovation. Our model could also be extended to explore
how control rights in organizations might help coordinate search efforts and prevent herding (Aghion
et al., 2008; Arora et al., 2025). Another promising avenue lies in broadening our definition of data to
include dimensions such as precision, informativeness, and bias, all of which are likely to shape search
behavior in meaningful ways. The observational analysis, while strengthened by an instrumental
variable approach, could also be complemented by research designs that introduce direct experimental
variation in the data provided. Expanding the analysis to consider a broader set of innovation outcomes

across diverse domains would further enhance the generalizability of our findings.
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7 Tables and Figures

Panel A: User Interface

This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

+ Stagel= + Stagel * Stagel + Stagel * Stagel
+ Stage2 + Stage? + Stage2 + Stage2 * Stage2
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
' : a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.
Now it is YOUR TURN, please select a mountain.

1player selected this
mountain

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountai

? ? ?

?

Panel B: Examples of No-Data Condition and Data Conditions

(i) No-data condition (ii) Low-value condition
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(iii) Medium-value condition (iv) High-value condition
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? 0 ss00 ? ? ? ? < suoo 2 2 2
A A AR ad ad ad A A A A

Figure 1: Experimental Platform.

Note: This figure shows the interface participants saw during our online experiment. Panel A illustrates the platform as it
appeared in the no-data condition. In this example, Mountain 4 was selected by one other participant, while the user chose
Mountain 5. Note that the dollar value of the gems changes in every round and is displayed on the left. Panel B presents
the four experimental conditions. In the data condition, participants are shown the value of the gem hidden behind one
randomly selected mountain—this could be the medium, the high, or one of the low outcomes. .
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i) Group Payoffs ii) Share of Mountains Explored iii) Likelihood of Breakthrough
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Figure 2: Round Outcomes by Experimental Condition.

Note: Figure (i) displays the average group payoffs per round, by experimental condition. Payoffs are calculated as a
share of the maximum possible payoff possible in each round. Figure (ii) shows the average share of unmapped mountains
selected per round, by experimental condition. Figure (iii) reports the proportion of rounds in which the maximum payoff
was uncovered, by experimental condition. Error bars indicate 95% confidence intervals. See text for more details.
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Table 1: Round-Level Experimental Outcomes.

Group Payoff Group Exploration Group Breakthrough
(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)
High 44.520%** -81.330%** -1.500
(0.894) (3.049) 4.277)
Low 1.545 4.598 -2.045
(1.228) (3.120) (3.631)
Medium -3.133%** -38.634%** -56.338***
(0.670) (2.577) (5.057)
Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 480 480 364

Note: T p < 0.1, *p<0.05 **p < 0.01, *** p < 0.001. Standard errors clustered at the session level

in parentheses.

Estimates from OLS models. The unit of analysis is the group-round level (480 rounds in total). Column
2 includes only the rounds in which at least one diamond was present (364 rounds). In all models, payofts
are non-rival if multiple agents choose the same project. Group Earnings= sum of payoffs in a group-
round; Options Explored= share of unknown mountains explored in the round; Found Maximum:0/1=1 if
the location of the maximum was found by any participant. The excluded category is the control condition
without data. See text for more details.
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Table 2: Round-Level Outcomes of the Experiment with Payoff Rivalry.

Panel A: Intermediate Payoff Rivalry

Group Payoff Group Exploration Group Breakthrough
(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)
High 19.048* -15.520* -3.681
(2.253) (1.918) (1.712)
Low -7.212 8.7591 -4.162
(2.803) (2.939) (5.394)
Medium -1.118 -19.870** -24.4707
(1.714) (0.524) (5.726)
Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 120 120 90

Panel B: Extreme Payoff Rivalry

Group Payoff Group Exploration Group Breakthrough
(1) Group Earnings ($) (2) Options Explored (%) (3) Found Maximum (0/1)
High 3.698 0.000 -0.000
(2.400) (0.000) (0.000)
Low -6.888T 0.000 -0.000
(1.753) (0.000) (0.000)
Medium 3.345% 0.000 -0.000
(0.364) (0.000) (0.000)
Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 120 120 90

Note: T p < 0.1,*p <0.05 **p < 0.01, ** p < 0.001.

Estimates from OLS models. The unit of analysis is the group-round level. In Panel A, payoffs exhibit
intermediate rivalry (N = 3), meaning that once three agents have selected the same mountain in a given
period, any additional agents choosing that mountain will receive a payoff of zero. In Panel B, payoffs
exhibit extreme rivalry (N = 1), where only the first agent selecting a mountain earns a positive payoff,
while any subsequent agents choosing the same mountain receive a payoff of zero. Group Earnings= sum
of payoffs in a group-round; Options Explored= share of unknown mountains explored in the round; Found
Maximum:0/1=1 if the location of the maximum was found by any participant. The excluded category is
the control condition without data. Note that coefficients in columns (2) and (3) of Panel B are zero because
the experimental conditions achieve results indistinguishable from the excluded category of no data. See
text for more details.
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Panel A: Gardner’s Syndrome
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Figure 3: Two Case Studies in Search for the Genetic Origins of Human Diseases.

Note: The solid black line shows the cumulative number of gene candidates explored for the disease up to each year. Panel
A displays data for Gardner’s syndrome, with the vertical line marking the year the association with the APC gene was
discovered (DisGeNET score in the 99 percentile). Panel B shows data for Tangier’s disease. The first vertical line marks
the discovery of the APAO1 association (DisGeNET score in the 60" percentile), while the second marks the discovery of
the ABCALI association (DisGeNET score in the 99™ percentile). All other genes explored were below the 60" percentile
of the DisGeNET score.
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Table 3: Descriptive Statistics of the DisGeNET Database.

Mean Median Sd Min Max N

Max Found: Low (0/1) 0.10 0.00 0.30 0 1 5519
Max Found: Medium (0/1) 0.32 0.00 0.47 0 1 5519
Max Found: High (0/1) 0.58 1.00 0.49 0 1 5519

Year of First Low Score 1991.45 1992.00 5.58 1980 2000 1530
Year of First Medium Score 1993.71 1994.00 7.42 1980 2019 2890
Year of First High Score 199498 1995.00 8.13 1980 2019 3964
Delay (Years since 1980) 21.75 18.00 12.82 0 39 5519

Total Publications 294.63 48.00 1983.81 9 94470 5519
Total Genes Discovered 129.95 32.00 394.35 1 8545 5519
New Genes per Paper 0.73 0.72 0.50 0 9 5519
Total PIs on disease 186.34 38.00 1042.30 5 43749 5519

Note: This table presents cross-sectional descriptive statistics for our sample at the disease level. Max
Found: Low: 0/1=1 if the gene with the highest DisGeNET score found during the early exploration period
is classified as L. Max Found: Medium: 0/1=1 if the gene with the highest DisGeNET score found during
the early exploration period is classified as M. Max Found: High: 0/1=1 if the gene with the highest
DisGeNET score found during the early exploration period is classified as H. Year of First Low Score = the
year of the first discovery involving a gene in the L category. Year of First Medium Score: the year of the
first discovery involving a gene in the M category. Year of First High Score: the year of the first discovery
involving a gene in the H category. Delay (Years since 1980) = the number of years elapsed before any H
gene is discovered for the disease. Total Publications = the number of publications about the disease during
the sample period (1980-2019). Total Genes Discovered = the number of genes explored for the disease
during the sample period (1980-2019). New Genes per Publication = the number of new genes explored
per scientific publication during the sample period (1980-2019). Total Pls = the number of unique principal
investigators (PIs) that have studied the disease during the sample period (1980-2019). See text for more
details.
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Table 4: Disease-Level Outcomes of Genetic Search.

Panel A: Full Sample
Group Breakthrough Group Exploration Group Delay
(1) High-Value Gene (0/1) (2) New Genes/Papers (3) Years From 1980

Max Found: M -0.105* -0.144% 1.743***

(0.033) (0.023) (0.519)
Max Found: H 0.514** -0.261** -20.371*%

(0.042) (0.028) (0.692)
Disease Class FE Yes Yes Yes
Count of Publications Yes Yes Yes
N 4760 4760 4760

Panel B: Split Samples

Group Breakthrough ~ Group Exploration Group Delay

High-Value Gene (0/1) New Genes/Papers Years From 1980
High Competition: (1) No (2) Yes (3) No (4) Yes (5) No (6) Yes
Max Found: M -0.165*  -0.0439  -0.144*  0.0779  2.492** 2.296

(0.0433) (0.154) (0.0510) (0.0972)  (0.637) (2.973)
Max Found: H 0.516™** 0.541** -0.132F  -0.00319 -18.66*** -21.45***

(0.0470) (0.159) (0.0790) (0.0949) (0.674) (2.992)
Disease Class FE Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes
N 1106 1236 1106 1236 1106 1236

Note: T p<0.1,*p <0.05 **p < 0.01, ** p < 0.001.

Standard errors clustered at the disease-class level in parentheses.

Estimates from OLS models. The unit of analysis is the disease level. In Panel A, we report estimates
from the full sample of diseases. For each human disease, we identify the highest DisGeNET score among
all genes discovered during the exploration period (i.e., before 2000). In Panel B, we report split-sample
results that test how our results vary between diseases with more or less competition. Columns (1), (3),
and (5) present results for diseases with a bottom-quartile number of principal investigators during the
exploration window, while Columns (2), (4), and (6) show results for those with a top-quartile number. We
categorize the maximum scores as follows: scores below the 60" percentile are labeled L, those between
the 60" and 90" percentiles as M, and those above the 90" percentile as H. High-Value Gene: 0/1=1 if
any H candidate was discovered for the disease. New Genes/Papers= the number of new genes explored
per scientific publication in the years following the exploration period. Years From 1980= the number of
years until the first H candidate is discovered. In all models, diseases in category L serve as the reference
group. We include disease-class fixed effects and control for the number of publications post-2000. See
text for more details.
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Panel A: Genes with a Mouse Orthologs are Explored Earlier
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Panel B: First-Stage Evidence for the Instrumental Variable
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Figure 4: Visual Evidence for Our Instrumental Variable Strategy.

Note: Panel A provides evidence at the gene level that early research tends to focus on genes with mouse orthologs. Each
chart shows OLS estimates and 95% confidence intervals estimated from a regression. First year= the first year a study
exploring a given gene is published. Explored before 2000: 0/1=1 if the gene was explored before the year 2000 for at
least one disease. Panel B provides a binscatter of the first stage of our disease-level instrumental variable in Table 5. M
Share of Orthologs: share of orthologous genes (i.e., those with a mouse ortholog) that fall into the M category for each
disease. (Max Found: M): 0/1=1 if the maximum DisGeNET score found during the exploration period is classified as M.
See text for more details
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Table 5: Instrumental Variable Evidence from Human-Mouse Gene Orthologs.

First Stage Second Stage
Max Found: M High-Value Gene (0/1) New Genes/Papers  Years From 1980
(1) () (3) 4)
M Share of Orthologs 0.694***
(0.0559)
Max Found: M -0.600*** -0.847** 15.93***
(0.0567) (0.197) (2.132)
F-Statistic (First Stage) 154.12
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 4757 4757 4757 4757

Note: 1 p<0.1,*p<0.05, **p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses. We report the effective first-stage F statistic from Olea and Pflueger (2013).
Estimates from 2SLS models. The sample is at the disease level. For each human disease, we identify
the highest DisGeNET score among all genes discovered during the exploration period (i.e., before 2000).
To construct our instrument, we calculate the share of each disease’s orthologous gene candidates (i.e.,
those with a mouse ortholog) that fall into the M category. We categorize the maximum scores as follows:
scores below the 60" percentile are labeled L, those between the 60t and 90t percentiles as M, and those
above the 90™ percentile as H. High-Value Gene: 0/1=1 if any H candidate was discovered for the disease.
New Genes/Papers= the number of new genes explored per scientific publication in the years following the
exploration period. Years From 1980= the number of years until the first [/ candidate is discovered. In all
models, diseases in categories L and H serve as the reference group. We include disease-class fixed effects
and control for the number of publications post-2000. See text for more details.
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Panel A: Discovery of an M Panel B: Discovery of an H
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Figure 5: Dynamic Effects of the Discovery of an M or H Genetic Target on Exploration.

Note: Panel A plots OLS estimates and 95% confidence intervals from an event study design that explores how genetic
exploration in each disease evolves after the discovery of the first medium-value genetic target. Panel B plots analogous
estimates for the discovery of the first high-value genetic target. For each human disease, we classify DisGeNET scores
below the 60" percentile as a “low” gene discovery, scores between the 60" and 90" percentile as a “medium” gene
discovery, and scores above the 90" percentile as a “high” (or breakthrough) gene discovery. Standard errors are clustered
at the disease class level. See text for more details.
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A Experimental Results: Additional Details

A.1 Logistics of the Experiment

Figure A.1 summarizes how our experimental sessions unfolded. When participants join, they are
assigned either to a data or to a no-data condition.'® The experiment begins when a total of ten players
are assigned to the same experimental set. Then, from each of these experimental sets, two groups
of five people are randomly drawn to play the first five rounds (what we labeled as “block™). At the
end of the block, the composition of the two groups is randomly reshuffied, and a second block of five
rounds is played. This procedure is repeated a total of four times so that each player ends up playing
exactly twenty rounds. The order of blocks seen by participants in different experimental sessions is
random. The gem types change each round according to a pre-recorded script generated stochastically
so that the actual gems and their values each round are effectively random for the player. Similarly,
the payoffs and the specific order in which specific gems are revealed in the treatment condition is
generated by a random script before the experiment begins.
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Figure A.1: Flowchart of the Experimental Setup.

Note: This figure provides an overview of the experiment for one actual session that took place in December 2024.

1ONot in every experimental session there was a no data condition, in which case the players would be randomly split (and
then reshuffled) across two distinct data conditions.



Table A.1 presents the descriptive statistics for the experimental data of the main experiment, in which
payoffs are non-rivalrous. Data are shown separately by treatment condition. Overall, the table already
shows our main results in terms of payoffs, exploration, and discovery.

Table A.1: Descriptive Statistics of the Experimental Data.

N Mean SD Median Min Max

Group Payoff (Share)

Low 80 75.49 10.87 75.11 49 100

Medium 160 67.64 17.01 66.67 30 100

High 80 98.84 4.11 100.00 71 100

No Data 160 73.27 11.82 72.73 36 100
I(Group found max)

Low 52 100.00 0.00 100.00 100 100

Medium 112 45.54 50.02 0.00 0 100

High 80 100.00 0.00 100.00 100 100

No Data 120 100.00 0.00 100.00 100 100
Mountains Explored (Share)

Low 80 89.38 13.65 100.00 50 100

Medium 160 45.31 29.16 50.00 0 100

High 80 3.44 11.76 0.00 0 75

No Data 160 83.25 15.36 80.00 40 100

Note: The table presents descriptive statistics on the 120 participants in the 480 rounds of the experiment
with the non-rivalry condition. Group payoff (Share)= sum of payoffs as a share of the maximum possible
payoff possible in each round; I(Group found max):0/1=1 if the location of the maximum was found by at
least one participant in the round; Group Exploration (Share)= share of unknown mountains explored in the
round.



A.2 Additional Figures and Tables
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Figure A.2: Outcomes Over Time by Experimental Condition.

Note: The figures show the impact of data on group outcomes as the experimental session progresses, separately for each
block of five rounds. Figure (i) shows the average group payoffs divided by experimental condition. Payoffs are reported as
a share of the maximum available in each round. Figure (ii) shows the share of rounds where the maximum was uncovered.
Figure (iii) shows the average share of unmapped mountains chosen.
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Figure A.3: Outcomes over Time and by Period of the Game.

Note: Panel A reports the experimental results on group payoffs computed as a share of the maximum possible in each
period. Figure (i) shows the average group payoffs achieved in period 1 by experimental condition and over time. Figure
(ii) shows the average group payoffs achieved in period 2 by experimental condition and over time. Panel B reports the
experimental results on the likelihood of a group breakthrough in each round. Figure (iii) shows the share of rounds in
which the maximum was uncovered in period 1 by experimental condition and over time. Figure (iv) shows the shows the
share of rounds in which the maximum was uncovered in period 2 by experimental condition and over time.



Table A.2: Breaking Down Results by Experimental Period.

Group Payoff Group Breakthrough
(1) 2 3) 4
Period 1 Period 2 Period 1 Period 2
High 33.240%**  11.281*** 8.765** -1.500
(0.344) (0.760) (2.440) 4.277)
Low 0.537 1.008 -1.818 -2.045
(0.338) (1.094) 4.764) (3.631)
Medium 4.837***  7.969***  -54.948***  -56.338***
(0.276) (0.634) (3.725) (5.057)
Session FE Yes Yes Yes Yes
Block order FE Yes Yes Yes Yes
Payoff structure FE Yes Yes Yes Yes
Observations 480 480 364 364

Note: 1 p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the session level
in parentheses . The sample is at the group-period level (480 rounds). In Columns 3 and 4, the sample
only includes rounds that contained at least one diamond (364 rounds). Group payoff= group-level period
payoffs in Euro; Group Breakthrough:0/1=1 if the maximum was found by at least one participant in the
period. The excluded category is the control condition without data. See text for more details.



Table A.3: Risk Aversion and Decision Not to Choose the Known Outcome in Period 1 when Medium
Is Revealed.

I(Didn’t Choose Medium in Period 1)

(1) (2) (3)
Risk aversion (std) -0.088**
(0.023)
Top quartile risk aversion -0.133*
(0.049)
Bottom quartile risk aversion 0.169*
(0.050)
Session FE Yes Yes Yes
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Round order FE Yes Yes Yes
Observations 800 800 800

Note: 1 p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the session level
in parentheses . Round-participant level observations, estimates from OLS models. The sample includes
all the individual observations for the 160 rounds where the medium value was revealed. I(Didn’t Choose
Medium in Period 1):0/1=1 if the player did not choose the medium value in period 1. Risk aversion=
standardized measure of individual risk aversion (Holt and Laury, 2002); Top quartile risk aversion:0/1=1
if the participant is in the top quartile of the risk aversion distribution in our sample; Bottom quartile risk
aversion:0/1=1 if the participant is in the bottom quartile of the risk aversion distribution in our sample.



Table A.4: Correlates of the Decision not to Choose the Known Outcome in Period 1 when Medium
Is Revealed.

I(Didn’t Choose Medium in Period 1)
(H () 3) “4)

English native -0.064
(0.072)
Wrong quizzes (std) 0.048
(0.030)
Round number -0.002
(0.006)
Order of choice 0.009
(0.015)
Session FE Yes Yes Yes Yes
Block order FE Yes Yes Yes Yes
Payoff structure FE Yes Yes Yes Yes
Round order FE Yes Yes Yes No
Observations 800 800 800 800

Note: T p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the session level
in parentheses . Round-participant level observations, estimates from OLS models. The sample includes
all the individual observations for the 160 rounds where the medium value was revealed. I(Didn’t Choose
Medium in Period 1):0/1=1 if the player did not choose the medium value in period 1. English native:0/1=1
if the participant is a native English speaker based on her reported nationality; Wrong quizzes= standardized
number of wrong answers to the initial comprehension test; Round number= progressive order in which the
rounds were played in the experimental session; Order of choice= random sequential order in which the
player chose in that round.



B The Genetic Roots of Human Diseases: Additional Details

B.1 Scientific Background

Genetics is the branch of biology that studies genes, heredity, and variation in living organisms.
Genes are segments of DNA (deoxyribonucleic acid) that contain the information necessary for
living organisms’ development, functioning, and reproduction. In practice, each gene is a portion
of DNA that contains instructions for building one or more products, such as proteins, which are
the fundamental constituents of an organism. Genes often acquire mutations (or variants) in their
sequence, most of which are harmless. However, some mutations can lead the gene to alter its
behavior and affect phenotypic traits, sometimes with significant consequences and the emergence of
severe health conditions. Discovering which mutations are responsible for specific human diseases
is thus a first-order priority since genes associated with a condition can often be used as drug targets
(Nelson et al., 2015). When a drug molecule binds to its genetic target, it can modify its functioning,
favorably affecting the outcome of a disease. Therefore, knowing the genetic roots of diseases has
important practical consequences in the design of pharmaceutical drugs.

Diseases caused by single gene mutations are called Mendelian disorders, but such diseases are
typically rare. Most common human diseases have a polygenic nature, meaning they are not due to a
single genetic factor but rather by mutations in many genes. This class of diseases is called complex and
genetic mutations may increase the risk of developing the condition without being either necessary
or sufficient on their own. Despite often clustering in families, polygenic disorders do not have
a predictable inheritance pattern because convoluted interactions between genes and environmental
factors determine them. This means that scientists need to search through the over 19,000 protein-
coding genes to find the mutations involved in each of the thousands of polygenic diseases (Tranchero,
2025).

Researchers have noted that even after the completion of the Human Genome Project, most scientists
continue to investigate the same small number of genes (Stoeger et al., 2018). Gates et al. (2021) report
that 1% of genes still receive 22% of all gene-related publications, helping to explain why current
treatments exploit only around 10% of the potentially druggable targets. This situation is probably
suboptimal since our chances of finding a cure for polygenic diseases would benefit from exploring a
larger number of genes (Edwards et al., 2011) and several understudied genes showing high promise
have been identified (Nguyen et al., 2017; Stoeger et al., 2018). Interestingly, despite much debate on
this extreme concentration of attention on a small number of theoretically well-known genes, we still
lack an explanation for its drivers. Some scholars have attributed it to scientists’ preference for genes
with past data that permit the formulation of functional hypotheses (Haynes et al., 2018), akin to what
we characterized as a streetlight effect in this paper.

B.2 Data Description

DisGeNET. Our main data source is DisGeNET (v7.0), which is considered a complete repository
of scientific results linking human diseases to their genetic causes (Pifiero et al., 2020). This database
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aggregates all novel gene-disease combinations studied by publications indexed in PubMed. The
information is harvested from specialized sources, including curated datasets such as ClinVar, UniProt,
and Orphanet.'! In addition, DisGeNET complements these data with information extracted from the
scientific literature indexed in PubMed using text-mining approaches. Our starting data are at the
gene-disease-paper level, because for each gene-disease pair we observe both the publication that
introduced it and the list of all follow-up articles that investigated it.

Genes. Each gene in the database is identified by a unique ID from Entrez Gene, a gene-centric
resource maintained by the National Center for Biotechnology Information (NCBI). These identifiers
are species-specific, meaning the ID assigned to a human gene differs from that of its homolog in
another species. DisGeNET includes only data from studies on human genes and compiles the Entrez
Gene ID for each gene examined in PubMed-indexed papers. We further restrict our sample to
protein-coding genes, given their central role in the drug discovery process (Nelson et al., 2015).

Diseases. Disease entries in DisGeNET are annotated using vocabulary from the Unified Medical
Language System (UMLS), a set of crosswalks that bring together many health and biomedical vocab-
ularies and standards to enable interoperability between databases. DisGeNET compiles the UMLS ID
of each disease studied by papers in PubMed. Since we focus on human diseases, we keep any entries
that map to the following UMLS semantic types: disease or syndrome; neoplastic process; acquired
abnormality; anatomical abnormality; congenital abnormality; and mental or behavioral dysfunction.
Using the UMLS ID, we also obtain disease relations from Kehoe and Torvik (2019), which contains
all pairwise relationships in the Medical Subject Headings vocabulary (MeSH) hierarchy.

B.3 DisGeNET Score

DisGeNET provides a synthetic DisGeNET Score for each gene—disease pair based on existing knowl-
edge. The Score ranges from O to 1, with higher values indicating combinations that are more
scientifically robust and therapeutically promising. By design, it incorporates both the curation and
reliability of the sources supporting a given association. In practice, the Score reflects how scien-
tifically promising a gene target is in relation to a given disease. This provides a better assessment
than commonly used proxies of scientific importance, such as the count of citations received by the
paper introducing a gene-disease pair. In the version used in this paper (v7.0), the score offers a
parsimonious way to assess the scientific strength of any given gene—disease pair as of 2020.

In particular, the raw DisGeNET score is built with the following formula:
DisGeNET score of gene i for disease j = C; ; + M, ; + I; j + L; ;

The first component C; ; summarizes the evidence from curated sources reporting gene-disease com-

"For the complete list of sources aggregated by DisGeNET, see https://www.disgenet.org/dbinfo.
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bination < 7,5 >:
0.6 if ]Vsouv"cesc > 2

0.5 if Nsourcesc =2
Cij= ) (B.1)
0.3 if ]\fsourcesc =1

0 otherwise

where Ng,yuces. 1S the number of curated sources supporting a gene-disease association, including
CGlI, ClinGen, Genomics England, CTD, PsyGeNET, Orphanet, and UniProt.

The second component M; ; summarizes the evidence from experiments using mouse models reporting
gene-disease combination < 4, j >:

(B.2)

{02 Nugureesy, > 0
" 0  otherwise

where Ngources,, 18 the number of sources using the lab rat or lab mouse from RGD, MGD, and CTD.

The third component /; ; summarizes the evidence inferred from experiments on gene-disease combi-
nation < 7, j >:

(B.3)

0.1 if Noources; > 1
[i,j ==
0 otherwise

where Ngources; 18 the number of sources from HPO, CLINVAR, GWAS Catalog, and GWASDB.

Finally, the component L; ; summarizes the evidence mined from the literature about gene-disease
combination < 7,7 >:

0.1 if IV, ublications 9
= { P (B.4)

Npublications -0.01 if Npublications S 9

where Npupiications 18 the number of publications supporting a gene-disease association as mined by
LHGDN and BEFREE.

The DisGeNET Score has strong face validity and has been thoroughly validated in prior research
(Pifero et al., 2020). Because it is designed to capture the biological importance of a gene-disease
pair, we should expect higher-scoring associations to be linked to more downstream pharmaceutical
development—such as clinical citations, granted patents, and approved drugs. To test this, we regress
the raw DisGeNET score on each of these real-world outcomes. The results, presented in Appendix
Table B.1, show that higher scores are associated with significantly greater levels of clinical citations,
patenting activity, and drug development.
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Table B.1: Associations Between DisGeNET Scores and Real-World Pharmaceutical Outcomes

Clinical Citations Granted Patents Approved Drugs
(1) Count (#) (2) Has Any (0/1) (3) Count (#) (4) Has Any (0/1) (5) Count (#) (6) Has Any (0/1)
DisGeNET Score ~ 51.428*** 0.939*** 1.669*** 0.153* 0.085** 0.022*
(2.302) (0.005) (0.070) (0.003) (0.007) (0.001)
N 810,377 810,377 810,377 810,377 810,377 810,377

*p < 0.05, ** p < 0.01, *** p < 0.001. Robust standard errors in parentheses. Estimates from OLS
models. The sample is at the gene-disease level. We correlate the raw DisGeNET score with real-world
measures of clinical impact. Count Clinical = total clinical articles based on a gene-disease pair. Granted
Patents = count of USPTO granted patents for inventions leveraging a given gene as a drug target for a given
disease. Count Drugs = count of FDA-approved drugs leveraging a given gene as a drug target for a given
disease. Models (1), (3), and (5) use count variables, while Models (2), (4), and (6) use corresponding
indicator versions.

In our main specification, we convert the raw DisGeNET scores into percentile ranks, and consider
any score below the 60™ percentile as a low payoff, between the 60" and 90" percentile as a medium
payoff, and above the 90" percentile as a high payoff, respectively. We now verify that these score
categories correspond to meaningful differences in real-world outcomes. In Appendix Figure B.1, we
plot our three outcome metrics by score category. We find that clinical citations, granted patents, and
approved drugs are all discretely increasing in score category, suggesting that our score thresholds do
capture substantive differences in impact.

i) Clinical Citations ii) Granted Patents iii) Approved Drugs
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Figure B.1: Relationship Between Score Categories and Real-World Outcomes.

Note: This figure shows the relationship between our categorization of raw DisGeNET scores (Low, Medium, High) and
real-world innovation outcomes. Panel (i) shows the average number of clinical citations on a gene-disease pair (data as of
2024). Panel (ii) shows the average number of granted patents targeting a gene-disease pair (data as of 2023). Panel (iii)
shows the average number of approved drugs targeting a gene-disease pair (data as of 2023).

The version of DisGeNET in our possession (v7.0) was downloaded in 2020, but the first version was
released in 2015 (v1.0). Appendix Figure B.2 shows that the ordinal rankings of gene-disease pairs
are largely preserved over time, showing a remarkable stability of the DisGeNET scores. We find only
a handful of instances where a gene-disease pair would be classified differently by using the earlier
version of the Score. This suggests that the DisGeNET Score is a good approximation of the “ground
truth” scientific value of a gene-disease pair.
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Figure B.2: Comparison of DisGeNET Scores Between Version 1 and Version 7

Note: This figure presents a binned scatterplot comparing the earliest available DisGeNET scores (version 1, released in
2015) to those from the release used in our main analysis (version 7, released in 2020).

Finally, we show the robustness of our analysis by using the 2015 scores and restricting the sample
to the year 2015 inclusive. We replicate the results from Table 4 in Appendix Table B.2. The results
are fully consistent with our main analysis, providing an important validation that leverages a different
version of our measurement for an alternative time period.

Table B.2: Analysis Based on DisGeNET v1 Scores (2015)

Group Breakthrough Group Exploration Group Delay
(1) High-Value Gene (0/1) (2) New Genes/Papers (3) Years From 1980

Max Found: M -0.0497 -0.151%** 0.939*

(0.029) (0.029) 0.441)
Max Found: H 0.739*** -0.273*** -23.229***

(0.031) (0.030) (0.595)
Disease Class FE Yes Yes Yes
Count of Publications Yes Yes Yes
N 3261 3261 3261

Note: 7 p<0.1,*p <0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification but uses the earliest version of DisGeNET scores (released in 2015). For each human disease,
we determine the highest DisGeNET score for any gene identified during the exploration period (i.e.,
pre-2000). We classify maximum scores below the 60" percentile as L, scores between the 60" and 90"
percentile as M, and scores above the 90" percentile as H. High-Value Gene: 0/1=1 if any H candidate was
discovered for the disease. New Genes/Papers= the number of new genes explored per scientific publication
in the years following the exploration period. Years From 1980= the number of years until the first
candidate is discovered. In all models, diseases in category L serve as the reference group. We include
disease-class fixed effects and control for the number of publications post-2000. See text for more details.
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C Additional Figures and Tables
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Figure C.1: Illustration of the Empirical Setup.

Note: This figure presents a stylized depiction of our approach to translate the theoretical framework to the disease-level
data in our sample. For each human disease, we record every gene identified during the early exploration period (i.e.,
pre-2000). We classify scores below the 60" percentile as L (red), scores between the 60" and 90™ percentile as M
(yellow), and scores above the 90" percentile as H (green). The highest-scoring genetic target for each disease is then
used to classify the nature of early data available to scientists. In this stylized representation, scientists identified three
gene-disease pairs with L scores for Disease 1, which means we classify its early data as L. For Disease 2, scientists
found one L and one M, resulting in a classification of M. For Disease 3, two L scores and one H score were uncovered,
leading to a classification of H. See text for further details.
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Instrument = share of disease’s mouse orthologs that are M
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Figure C.2: Illustration of the Instrumental Variable Strategy.

Note: This figure presents a stylized depiction of our IV approach, which relies on gene orthology (i.e., when genes in
different species descend from a common ancestor, largely retaining the same biological function). For each disease, we
only consider the gene candidates that have an ortholog in a mouse. We then measure the share of these orthologous genes
that are classified as medium-value (M) candidates. In the example above, the M share for Disease 1 would be 75%, while
for Disease 2 it would be 25%. See text for further details.
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Figure C.3: Reduced-Form Evidence for the Streetlight Effect in the Search for Genetic Candidates.

Note: This figure shows binned scatterplots for each of our dependent variables against our instrumental variable, defined
as the share of each disease’s orthologous genes that fall into the M category. Panel (i) shows the impact of the instrument
on the likelihood of finding any breakthrough during the sample period. Panel (ii) shows the impact of the instrument on
the number of new genes explored per publication in the years following the exploration window. Panel (iii) shows the
impact of the instrument on the delay in discovering a breakthrough, defined as the years elapsed from 1980 (the first year
of our panel). We include controls for disease class and the number of publications post-2000. See text for more details.
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Panel A: Keeping Sibling and Parent Diseases
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Figure C.4: Considering only Diseases Genetically Related to a Disease with a Breakthrough.

Note: This figure replicates the event study of figure 5 but only considers diseases that are genetically related to a disease
with a known breakthrough (genetic discoveries with scores above the 90" percentile of DisGeNET scores). We obtain
genetic relations from the Medical Subject Headings vocabulary (MeSH). In Panel A, we keep both sibling diseases
(i.e., diseases sharing the same parent MeSH code) and parent diseases (i.e., diseases one level up in the MeSH tree) of
diseases with a breakthrough. In Panel B, we keep only sibling diseases (i.e., diseases sharing the same parent MeSH
code) of diseases with a breakthrough. This figure plots OLS estimates and 95% confidence intervals from an event study
design that explores how genetic exploration in each disease evolves in the years before and after the discovery of the first
medium-value genetic association. Standard errors are clustered at the disease class level. See text for more details.
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Table C.1: Association Between Genes Having Mouse Orthologs and Their Appearance in the
Scientific Literature.

Panel A: Gene Level

(1) Publication Year (2) Publication Year

Has Mouse Ortholog (0/1) -0.798** -2.559%
(0.262) (0.372)

Gene Group FE No Yes

N 16,000 10,344

Panel B: Gene-Disease Level

(1) Publication Year (2) Publication Year

Has Mouse Ortholog (0/1) -0.00385*** -0.0122***
(0.0000985) (0.000169)

Disease FE Yes Yes

Gene Group FE No Yes

N 339,136,000 257,764,556

*p < 0.05, ¥* p < 0.01, *** p < 0.001. Robust standard errors in parentheses.

This table examines whether human genes with orthologous counterparts in the lab mice are explored earlier
by scientists. In Panel A, the data is at the gene level. We assess whether genes with an ortholog appear
in scientific studies earlier regardless of the disease. In Panel B, the data is at the gene-disease level. We
assess whether genes with an ortholog appear in scientific studies earlier for a given disease. We impute a
value of 2020 for gene-disease pairs with no recorded publications. In all models, the dependent variable is
the first year of publication. In Column (2) of both Panel A and Panel B, we include controls for gene group
classification.
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Table C.2: Descriptive Statistics at the Disease-Year Level.

Mean Median Sd Min Max N
Maximum Gene Score 39.68 0.00 4556 O 100 220,760
Found Any High Gene (0/1) 0.28 0.00 0.45 0 1 220,760
Count of Publications 7.37 0.00 82.60 O 10,449 220,760
Count of Genes Discovered  3.25 0.00 1546 O 685 220,760
New Genes per Paper 0.74 0.67 1.03 0 123 109,002

Note: This table presents descriptive statistics for our disease-year panel. Maximum Gene Score = the

highest DisGeNET score uncovered each year for a disease. Found Any High Gene:0/1=1 if any H was

discovered a year for a given disease. Count of Publications = the number of publications on the disease in

a given year. Count of Genes Discovered = the number of genes explored in relation to a disease each year.

New Genes Per Paper = the number of genes explored per paper for a disease each year.
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Table C.3: Disease-Year-Level Analysis of Exploration Dynamics.

Group Exploration Group Exploration

(1) New Genes/Papers  (2) New Genes/Papers

Post M Discovery -0.180***
(0.030)

Post H Discovery -0.256***

(0.022)
Disease FE Yes Yes
Year FE Yes Yes
Count of Publications Yes Yes
N 98,547 97,956

Note: T p<0.1,*p<0.05 **p < 0.01, ¥** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

OLS estimates from differences-in-differences models. The sample is at the disease-year level. We examine
how genetic exploration within each disease evolves following the discovery of the first medium-value
(Column 1) and high-value (Column 2) genetic target. For each disease, we classify DisGeNET scores
below the 60" percentile as “low,” scores between the 60" and 90" percentiles as “medium,” and scores
above the 90" percentile as “high” (or breakthrough) discoveries. Yearly Genes/Papers= the number of new
genes explored per scientific publication. All models include disease fixed effects and year fixed effects,
and control for the annual number of publications. See text for more details.

20



Table C.4: Robustness to TWFE Weighting Concerns.

csdid did_multiplegt did_imputation
(1) Genes/Papers  (2) Genes/Papers  (3) Genes/Papers  (4) Genes/Papers  (5) Genes/Papers  (6) Genes/Papers
Post M Discovery -0.352%** -0.238** -0.246***
(0.069) (0.081) (0.037)

Post H Discovery -0.223*** -0.187*** -0.281***

(0.031) (0.031) (0.029)
Disease FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes
N 56870 49812 48619 32415 64503 59402

Note: T p<0.1,*p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

OLS estimates from differences-in-differences models. The sample is at the disease-year level. We replicate
Table C.3 but use alternate estimators that avoid the weighting problems associated with TWFE. We
implement the csdid command from Callaway and Sant’Anna (2020) in Columns 1-2, the did_multiplegt_dn
command from Chaisemartin and D’Haultfoeuille (2024) in Columns 3-4, and the did_imputation command
from Borusyak et al. (2021) in Columns 5-6. For each disease, we classify DisGeNET scores below the
60t percentile as “low,” scores between the 60" and 90t percentiles as “medium,” and scores above the
90™ percentile as “high” (or breakthrough) discoveries. Yearly Genes/Papers= the number of new genes
explored per scientific publication. All models include disease fixed effects and year fixed effects, and
control for the annual number of publications. See text for more details.

21



Table C.5: Sensitivity to Definition of Marginally Explored Diseases.

Group Breakthrough Group Exploration Group Delay
(1) >5Pubs  (2) >15Pubs (3) >25Pubs (4) >5Pubs (5) >15Pubs (6) >25Pubs (7) >5Pubs (8) >15Pubs (9) >25 Pubs

Max Found: M -0.043 -0.121** -0.162*** -0.205*** -0.131%* -0.109*** 0.883* 2.056*** 2773

(0.028) (0.038) (0.047) (0.019) (0.027) (0.032) (0.425) (0.583) (0.745)
Max Found: H 0.602*** 0.477** 0.422%** -0.315*** -0.260*** -0.243*** -21.400*** -19.910"** -19.271%**

(0.037) (0.045) (0.056) (0.029) (0.033) (0.038) (0.594) (0.729) (0.909)
Disease Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 5641 4149 3355 5641 4149 3355 5641 4149 3355

Note: 1 p<0.1,*p<0.05, **p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification (which removes diseases with less than 10 publications over the sample window) and shows
robustness when we keep only diseases with more than 5 publications (Columns (1), (4), and (7)), more
than 15 publications (Columns (2), (5), and (8)), and more than 25 publications (Columns (3), (6), and
(9)). For each human disease, we determine the highest DisGeNET score for any gene identified during
the exploration period (i.e., pre-2000). We classify maximum scores below the 60 percentile as L, scores
between the 60" and 90™ percentile as M, and scores above the 90" percentile as H. Columns 1-3 show
the impact of early discoveries on the likelihood of finding any breakthrough during the sample period.
Columns 4-6 show the impact on the number of new genes explored per scientific publication. Columns
7-9 show the impact of the delay in discovering a breakthrough, defined as the years that elapsed from 1980
(the first year of our panel). In all models, diseases classified under L constitute the excluded category. We
include disease-class fixed effects and control for the number of publications post-2000. See text for more
details.
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Table C.6: Sensitivity to the Exclusion of Outlier Diseases.

Group Breakthrough Group Exploration Group Delay
(1) High-Value Gene (0/1) (2) New Genes/Papers  (3) Years From 1980

Max Found: M -0.105** -0.129*** 1.878***

(0.033) (0.023) (0.514)
Max Found: H 0.503*** -0.200*** -19.465***

(0.042) (0.036) (0.642)
Disease Class FE Yes Yes Yes
Count of Publications Yes Yes Yes
N 4675 4675 4675

Note: T p<0.1,*p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification but excluding outlier diseases (i.e., those in the top 1% by publications over the sample
period). For each human disease, we determine the highest DisGeNET score for any gene identified during
the exploration period (i.e., pre-2000). We classify maximum scores below the 60" percentile as L, scores
between the 60 and 90" percentile as M, and scores above the 90" percentile as H. High-Value Gene:
0/1=1 if any H candidate was discovered for the disease. New Genes/Papers= the number of new genes
explored per scientific publication in the years following the exploration period. Years From 1980= the
number of years until the first H candidate is discovered. In all models, diseases in category L serve
as the reference group. We include disease-class fixed effects and control for the number of publications
post-2000. See text for more details.
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Table C.7: Alternative Definitions of Low and Medium-Value Genes.

Group Breakthrough Group Exploration Group Delay
(60" P (2) 70" P (3)80"" P (460" P (5)70"P (6) 80P (7)60"P  (8) 70" P  (9) 80" P
Max Found: M -0.105** -0.072**  -0.082***  -0.144***  -0.180***  -0.259*** 1.743*** 1.200** 1.303***
(0.033) (0.025) (0.024) (0.023) (0.020) (0.019) (0.519) (0.425) (0.391)
Max Found: H 0.514*** 0.549*** 0.555***  -0.261***  -0.261***  -0.269***  -20.371** -20.961*** -21.093***
(0.042) (0.033) (0.031) (0.028) (0.027) (0.029) (0.692) (0.589) (0.537)
Disease Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes Yes Yes Yes
4760 4760 4760 4760 4760 4760 4760 4760 4760

Note: 7 p<0.1,*p <0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification but varies the cutoff between a low and medium-value genetic association. In our baseline,
we adopt the 60t percentile to separate medium and high scores. We test the baseline (Columns (1), (4),
and (7)), the 70 percentile (Columns (2), (5), and (8)), and the goth percentile (Columns (3), (6), and (9))
instead. For each model, we hold the cutoff between a medium gene score and a high gene score fixed
at the 90" percentile. For each human disease, we determine the highest DisGeNET score for any gene
identified during the exploration period (i.e., pre-2000). Columns 1-3 show the impact of early discoveries
on the likelihood of finding any breakthrough during the sample period. Columns 4-6 show the impact on
the number of new genes explored per scientific publication in the years following the exploration period.
Columns 7-9 show the impact on the delay in discovering a breakthrough, defined as the years that elapsed
from 1980 (the first year of our panel). In all models, diseases classified under L constitute the excluded
category. We include disease-class fixed effects and control for the number of publications post-2000. See
text for more details.
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Table C.8: Alternative Definitions of Medium and High-Value Genes.

Group Breakthrough Group Exploration Group Delay
(1)90" P (2)95* P (3) 100" P (4)90" P  (5)95* P (6) 100 P  (7)90* P  (8)95** P  (9) 100" P
Max Found: M -0.105** -0.023 -0.053* -0.144***  -0.110***  -0.142*** 1.743*** 0.588 1.048**
(0.033) (0.026) (0.022) (0.023) (0.023) (0.023) (0.519) (0.388) (0.350)
Max Found: H 0.514*** 0.667*** 0.802*** -0.261***  -0.364***  -0.466***  -20.371***  -21.905***  -23.137***
(0.042) (0.036) (0.034) (0.028) (0.027) (0.027) (0.692) (0.652) (0.622)
Disease Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes Yes Yes Yes

4760 4760 4760 4760 4760 4760 4760 4760 4760

Note: T p<0.1,*p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification but varies the cutoff between a medium and high-value genetic association. In our baseline,
we adopt the 90™ percentile to separate medium and high scores. We test the baseline (Columns (1), (4),
and (7)), the 95" percentile (Columns (2), (5), and (8)), and the 100" percentile (Columns (3), (6), and (9)).
For each model, we hold the cutoff between a low gene score and a medium gene score fixed at the 60"
percentile (our baseline). Columns 1-3 show the impact of early discoveries on the likelihood of finding
any breakthrough during the sample period. Columns 4-6 show the impact on the number of new genes
explored per scientific publication in the years following the exploration period. Columns 7-9 show the
impact on the delay in discovering a breakthrough, defined as the years that elapsed from 1980 (the first
year of our panel). In all models, diseases classified under L constitute the excluded category. We include
disease-class fixed effects and control for the number of publications post-2000. See text for more details.
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Table C.9: Alternative Definitions of the Early Exploration Period.

Group Breakthrough Group Exploration Group Delay
(1) <1995 (2) <2000 (3) <2005 (4) <1995 (5) <2000 (6)<2005 (7) <1995 (8) <2000  (9)<2005
Max Found: M -0.024 -0.105** -0.100** -0.150***  -0.144***  -0.223*** 0.646 1.743%** 1.172**
(0.036) (0.033) (0.036) (0.021) (0.023) (0.028) (0.663) (0.519) (0.435)
Max Found: H 0.435*** 0.514*** 0.656*** -0.223***  -0.261***  -0.337***  -20.104***  -20.371*** -22.368***
(0.045) (0.042) (0.037) (0.027) (0.028) (0.034) (0.863) (0.692) (0.473)
Disease Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes Yes Yes Yes

3385 4760 4756 3385 4760 4756 3385 4760 4756

Note: 1 p<0.1,*p < 0.05, **p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification using alternative windows to define the period of early search. We report the results including
all years before 1995 (Columns (1), (4), and (7)), the baseline (Columns (2), (5), and (8)), and before 2005
(Columns (3), (6), and (9)). For each human disease, we determine the highest DisGeNET score for any
gene identified during the exploration period. We classify maximum scores below the 60" percentile as L,
scores between the 60™ and 90 percentile as M, and scores above the 9t percentile as H. Columns 1-3
show the impact of early discoveries on the likelihood of finding any breakthrough during the sample period.
Columns 4-6 show the impact on the number of new genes explored per scientific publication in the years
following the exploration period. Columns 7-9 show the impact on the delay in discovering a breakthrough,
defined as the years that elapsed from 1980 (the first year of our panel). In all models, diseases classified
under L constitute the excluded category. We include disease-class fixed effects and control for the number
of publications in the post-exploration period. See text for more details.
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Table C.10: Using Share of Publications on Disease to Define the Exploration Period.

Group Breakthrough Group Exploration Group Delay

(1) 5% (2) 10%  (3) 15% 4) 5% (5) 10% (6) 15% (7) 5% (8) 10% 9) 15%
Max Found: M -0.086***  -0.117*** -0.101**  -0.103**  -0.149*** -0.137*** 3.619*** 3.203*** 2.645%**

(0.026) (0.032) (0.033) (0.031) (0.034) (0.031) 0.671) (0.686) (0.719)
Max Found: H 0.332***  0.456**  0.549***  -0.168*** -0.243*** -0.245"**  -14.057*** -17.297*** -18.972***

(0.035) (0.040) (0.037) (0.022) (0.025) (0.025) (0.937) (0.893) (0.842)
Disease Class FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes Yes Yes Yes Yes Yes

4761 4761 4761 4761 4761 4761 4761 4761 4761

Note: 1 p<0.1,*p <0.05, **p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification using a disease-specific definition of the early exploration period. We compute the share of
total publications on a given disease that were published by a specific year. We then define the end of
the exploration period as the year 5% of publications were published (Columns (1), (4), and (7)), the year
10% of publications were published (Columns (2), (5), and (8)), and the year 15% of publications were
published (Columns (3), (6), and (9)). For each human disease, we determine the highest DisGeNET score
for any gene identified during the exploration period (which varies by disease). We classify maximum
scores below the 60" percentile as L, scores between the 60" and 90t percentile as M, and scores above
the 90" percentile as H. Columns 1-3 show the impact of early discoveries on the likelihood of finding
any breakthrough during the sample period. Columns 4-6 show the impact on the number of new genes
explored per scientific publication in the years following the exploration period. Columns 7-9 show the
impact on the delay in discovering a breakthrough, defined as the years that elapsed from 1980 (the first
year of our panel). In all models, diseases classified under L constitute the excluded category. We include
disease-class fixed effects and control for the number of publications in the post-exploration period. See
text for more details.
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Table C.11: Using Alternative Windows to Examine Follow-on Exploration.

New Genes/Papers

All Years 5 Years 10 Years Until H
(D 2 3 (€]

Max Found: M -0.144*** -0.246*** -0.204*** -0.172%**

(0.023) (0.040) (0.035) (0.028)
Max Found: H -0.261*** -0.454%** -0.353%**

(0.028) (0.046) (0.031)
Disease Class FE Yes Yes Yes Yes
Count of Publications Yes Yes Yes Yes
N 4760 4495 4715 1778

Note: 1+ p<0.1," p<0.05 * p<0.01, "™ p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification using alternative windows to evaluate exploration dynamics after a genetic discovery. We
report the results from the baseline (Column (1)), the 5 subsequent years after the year 2000 (Column
(2)), the 10 subsequent years after the year 2000 (Column (3)), and until the first high gene score is found
(Column (4)). For each human disease, we determine the highest DisGeNET score for any gene identified
during the exploration period (i.e., pre-2000). We classify maximum scores below the 60™ percentile as L,
scores between the 60" and 90™ percentile as M, and scores above the 90" percentile as H. Each model
shows the impact on the number of new genes explored per scientific publication in the years following the
exploration period. In all models, diseases classified under L constitute the excluded category. We include
disease-class fixed effects and control for the number of publications post-2000. See text for more details.
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Table C.12: Considering only Diseases Genetically Related to a Disease with a Breakthrough.

Siblings and Parents Siblings Only
(1) Yearly Genes/Papers (2) Yearly Genes/Papers

Post M Discovery -0.2517** -0.287**

(0.061) (0.092)
Disease FE Yes Yes
Year FE Yes Yes
Count of Publications Yes Yes
N 40505 24416

Note: T p<0.1,*p <0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

OLS estimates from differences-in-differences models. The sample is at the disease-year level. We replicate
Table C.3, but only consider diseases in the sample that are genetically related to a disease with a known
breakthrough (genetic discoveries with scores above the 90" percentile of DisGeNET score). We obtain
genetic relations from the Medical Subject Headings vocabulary (MeSH). In Column 1, we keep both
sibling diseases (i.e., diseases sharing the same parent MeSH code) and parent diseases (i.e., diseases
one level up in the MeSH tree) of diseases with a breakthrough. In Column 2, we keep only sibling
diseases (i.e., diseases sharing the same parent MeSH code) of diseases with a breakthrough. For each
disease, we classify DisGeNET scores below the 60" percentile as “low,” scores between the 60" and
90" percentiles as “medium,” and scores above the 90" percentile as “high” (or breakthrough) discoveries.
Yearly Genes/Papers= the number of new genes explored per scientific publication. All models include
disease fixed effects and year fixed effects, and control for the annual number of publications. See text for
more details.
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Table C.13: Considering only Diseases that Have a Breakthrough by the End of the Sample Period.

Group Exploration Group Delay
(1) 5 Years After (2) All Years After (3) Years From 1980

Max Found: M -0.142% -0.074 0.747

(0.062) (0.040) (0.468)
Max Found: H -0.460*** -0.220%** -13.588***

(0.062) (0.036) (0.457)
Disease Class FE Yes Yes Yes
Count of Publications Yes Yes Yes
N 3442 3581 3581

Note: 1 p<0.1,*p<0.05 **p < 0.01, *** p < 0.001. Standard errors clustered at the disease-class
level in parentheses.

Estimates from OLS models. The sample is at the disease-level. This table replicates our baseline
specification removing any diseases without a breakthrough during the sample period. For each human
disease, we determine the highest DisGeNET score for any gene identified during the exploration period
(i.e., pre-2000). We classify maximum scores below the 60" percentile as L, scores between the 60" and
90™ percentile as M, and scores above the 90™ percentile as H. Column 1 shows the impact on the number
of new genes explored per publication in the 5 years following the exploration window, while Column 2
shows the impact on the number of new genes explored per publication in all years following the exploration
window. Column 3 shows the impact on the delay in discovering a breakthrough, defined as the years
that elapsed from 1980 (the first year of our panel). In all models, diseases classified under L constitute
the excluded category. We include disease-class fixed effects and control for the number of publications
post-2000. See text for more details.
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Table C.14: Predicting Scientific Value of Gene-Disease Pairs from Related Conditions

Panel A: Predicting H

H Gene (0/1)
Max Sibling: L 0.011**
(0.002)
Max Sibling: M 0.025**
(0.002)
Max Sibling: H 0.231***
(0.003)
N 810,377

*p < 0.05, ** p < 0.01, *** p < 0.001. Robust standard errors in parentheses.

Panel B: Predicting M

M Gene (0/1)

Max Sibling: L

Max Sibling: M

Max Sibling: H

0.013**
(0.002)

0.144**
(0.002)

0.034**
(0.003)

N

810,377

This table examines whether a gene-disease pair is more likely to be classified as H (Panel A) or M (Panel
B) based on the strength of the gene’s associations with related diseases (sharing the same parent disease
in the MeSH taxonomy). The data is at the gene-disease level. For each gene-disease pair, we record the
highest DisGeNET score between the gene in question and any disease classified as a sibling of the focal
disease. We classify maximum scores below the 60t percentile as L, scores between the 60" and 90™
percentile as M, and scores above the 90™ percentile as H. H Gene: 0/1=1 if the pair is classified as H,
and M Gene: 0/1=1 if the pair is classified as M. In all models, gene-disease associations for which no
sibling score is found constitute the excluded category.
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D Experimental Instructions and Interfaces

D.1 No-Data Condition

Instructions

General Information

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to these instructions, you
can earn a significant amount of money paid to you at the end of the experiment via bank transfer.

To participate in this online experiment, you will need to use your notebook or personal computer (mobile phones are not
supported). If you are using a device that is not supported, please copy the experiment link, open a notebook or pc and paste
the link into the address bar.

Your computer screen will display useful information. Remember that the information on your computer screen is PRIVATE.
To ensure best results for yourself and accurate data for the experimenters, please DO NOT COMMUNICATE or interact with
other people on other media at any point during the experiment. If you have any questions, or need assistance of any kind,
please call +43-678-780-7284 or use Zoom anytime during the experiment and one of the experimenters will help you
privately. We expect the entire experiment to take up to 60 minutes to complete.

Following these instructions, you will be asked to make some choices. There are no correct choices. Your choices depend on
your preferences and beliefs, so different participants will usually make different choices. You will be paid according to your
choices, so read these instructions carefully and think before you decide.

The Basic Idea

There are 5 mountains and each of them hides one type of gem, which can only be found by exploring the mountain.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? ? ? ?

‘AA“A

There are 3 types of gems hidden:

Diamonds > Rubies o Topazes @

The exact values of the topazes, rubies, and diamonds vary across rounds but the diamonds are always worth more than the
rubies and the rubies are always worth more than the topazes:

‘7":-0:-@

You choose which mountains to explore and the value of the gems you find are your earnings in dollars.
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How the Gems Are Distributed

You will not know where the gems are hidden from the outset. At the beginning of every round, a gem for each mountain
will be randomly drawn, so any gem could be hidden in any mountain.

For each mountain, there is a

« 60% chance it contains a topaz

+ 20% chance it contains a ruby

» 20% chance it contains a diamond

TS

These chances are the same for all five mountains. Hence, there is some chance that there could be more than one diamond,
but there is also some chance that there could be no diamond. Further, even if, for example, the first two mountains happen
to contain a diamond, the chance that the third mountain contains a diamond is still 20%.

How Participants Choose Mountains

In each round, participants choose which mountain to explore. The choice does not happen simultaneously, but participants
choose sequentially, one after the other, according to a random order that changes every round. You can choose to explore
any mountain you wish. If you choose the same mountain chosen by other participants, each of you will receive the gem's
value uncovered. Similarly, if someone else chooses the same mountain that you previously chose, you will still receive the
full gem's value (and so will the other participant(s) that chose it).

To repeat, no participant has any initial information in Stage 1 on the location of gems.

Each Round Has 2 Stages

A round consists of 2 stages. At the beginning of a new round, gems are redrawn for each of the five mountains. The position
of gems will not be reset between the two stages in a round.

In Stage 1, all participants sequentially choose one mountain to explore. Before choosing a mountain, you will see which
mountains have been selected by the other participants in your group who chose before you, and how many participants
have selected each mountain. You can choose the same mountain or a different mountain.

At the end of Stage 1, the gems hidden in each mountain selected by all participants in Stage 1 are revealed, and you earn the
value of the gem hidden in the mountain you chose.

In Stage 2, you can again choose any of the same five mountains; that is you can either choose the same mountain of Stage 1
or switch to another one. The position of gems remains the same as in Stage 1, but this time you will also see the gems
located in the mountains revealed in Stage 1 in addition to the mapped mountain.

At the end of Stage 2, the gems hidden in each mountain selected by all participants in Stage 2 are revealed, and you earn the
value of the gem hidden in the mountain you chose in Stage 2. You will also see your total earnings for the round which
equals the sum of the value of the gem you found in Stage 1 and the value of the gem you found in Stage 2.
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Game Structure

The game is divided into 4 blocks, each made of 5 rounds, with each round encompassing the two stages described above. At
the beginning of each block, you will be randomly assigned to a new group of § participants, with whom you will play for the
entire block (5 rounds in total). After the block is complete, you will be randomly assigned to a new group of 5 participants.
Again, you will play for 5 rounds. This procedure will be repeated 4 times in total.

You will be reminded of this information in the top-right corner of your screen, as in the example below:

This is Block 1 of 4: You are in Round 3 of 5.

» Sisge i * Simge v ® Diage ] = * Siagel * Samgel
* Stage I e ® Singe I * Sipgel * Stagel * Sipge

Payment

Fixed Participation Fee: You will earn a participation fee of $5.00 for participating in this experiment.

Additional Payment and Random Round: One round will be randomly selected for payment at the end of the experiment. You

will be paid and your earnings in that round as described above. Any of the 20 rounds (4 blocks with 5 rounds each) could be
the one selected, so you should treat each round as if it will be the one determining your payment.

This protocol of determining payments suggests that you should choose in each round as if it is the only round that
determines your payment as the dollar value of the gems you select will directly translate into your earnings.

Survey and Payment: In addition to the participation fee and the payment for the randomly selected round, you will perform
a small task at the very end of the experiment, and your earnings from this task will be paid to you.

You will be informed of your payment and the round chosen for payment at the end of the experiment. The § you have
earned will be converted into Euros at an exchange rate of § 1 = € 0.67. Finally, after completing the experiment you will be
paid electronically via bank transfer.

Frequently Asked Questions

Q1: Is this some kind of psychology experiment with an agenda you haven't told us?

Az No, it is an economics experiment. If we do anything deceptive or don't pay you as described, then you can complain to
the University of Toronto Research Ethics Board and we will be in serious trouble. These instructions are meant to clarify
how you earn money and our interest is in seeing how people make decisions.

Q2: Is there a "correct” or "wrong” choice of action? Is this kind of a test?
A: No, your optimal choice depends on your preferences and beliefs and different people may hold different beliefs.

This button will be activated after 281 seconds. Please take your time to read through the instructions.
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Instructions Quiz Experiment Questionnaire

You have successfully finished reading the instructions.

The quiz, consisting of 8 questions in total, follows.

Quiz Time!

Please mark the following statements as correct/incorrect:

"QL: In each round, you will select two mountains (one in Stage 1, and one in Stage 2) and collect the gem that they hide. You
can choose the same mountain in both stages, or change after Stage 1.":

Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q2: If more than one player selects the same mountain, they will all collect the full value of the gem." :
Correct

Incorrect

Read Instructions

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q3: At the beginning of a new round, the gems are redrawn for each mountain.":
Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:

"Q4: No group member has any private initial information in Stage 1 on the location of gems." :

Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q5: The position of gems will not be reset between the two stages of a round." :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q6: All group members select the mountains simultaneously.” :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:

"Q7: If another group member chose a mountain before you, you cannot choose it again." :

Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:
"Q8: At the end of the experiment, one round will be randomly selected for payment.” :
Correct

Incorrect

Read Instructions

Instructions Quiz Experiment Questionnaire

You have successfully finished the quiz.

The experiment follows: When you are ready please click "Next" to start the experiment.

Start of Block 1

This is Block 1 of 4 and each Block consists of 5 Rounds.

You have been randomly assigned to a new group of 5 participants.
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Start of Round 1

You are now in Round 1 of 5 and each Round consists of 2 Stages.
The computer redrew the gems for each mountain.
No participant has any initial information on the location of gems.

In this round, for each mountain, there could be:

@ :a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
</ :a diamond worth $11.00 with 20% chance

Next

This is Block 1 of 4: You are in Round 1 of 5.

Stage 1 (0]

¢ Stagel = * Stagel e Stagel * Stagel * Stagel
* Stage2 * Stage2 * Stage2 * Stage2 * Stage2
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
7 :a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.

It is NOT your turn yet, please wait.

Mountain 1

Mountain 2

Mountain 3

Mountain 4

Mountain 5

?

A

?

A

?

A

?

A

?

A

Read Instructions
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This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

* Stagel = * Stagel
* Stage2 * Stage2

In this round, for each mountain, there could be:

@ :a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
7 :a diamond worth $11.00 with 20% chance

* Stagel * Stagel
* Stage2 * Stage2

The location of gems is random and no participant has any initial information where each gem is hidden.

Now it is YOUR TURN, please select a mountain.

1player selected this 1player selected this
mountain mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5
|
? ? | ? | ? ?

| 1
1 1
e o= o

Read Instructions

Stage 1: Earnings

You selected Mountain 3 and found a < ). Thus, you earned $11.00 from your choice.

All discovered gems and their locations are highlighted below.
These will also be displayed in Stage 2 when you make your next choice.

Click "Next" to proceed to the next stage.

Mountain 1 Mountain 2 Mountain 3 Mountain 4

* Stagel
* Stage2

Confirm your mountain choice

Mountain 5

@ $1.00 o $6.00 \7 $11.00 @ $1.00

N Y ST

@ $1.00

Ak

Read Instructions
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This is Block 1 of 4: You are in Round 1 of 5.

Stage 2

* Stagelv * Stagel « Stagel * Stagel * Stagel
* Stage2 4= * Stage2 ¢ Stage2 ¢ Stage2 * Stage2
In this round, for each mountain, there could be:
t@ : a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
« ) :a diamond worth $11.00 with 20% chance
Now it is YOUR TURN, please select a mountain.
2 players selected this
mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

P s |

$1.00 $6.00 $11.00 $1.00 $1.00
1 |

Y NERY S SRR\

Read Instructions Confirm your mountain choice

Stage 2: Earnings

You selected Mountain 3 and found a < ). Thus, you earned $11.00 from your choice.
Your total earnings from both stages in this round are $11.00 + $11.00 = $22.00
All discovered gems and their locations in both Stages are highlighted below.

Please click "Next" to proceed to the next round.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

@ $1.00 o $6.00 \7 $11.00 @ $1.00 @ $1.00

A M A A e

Read Instructions
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D.2 Data Condition

Instructions

General Information

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to these instructions, you
can earn a significant amount of money paid to you at the end of the experiment via bank transfer.

To participate in this online experiment, you will need to use your notebook or personal computer (mobile phones are not
supported). If you are using a device that is not supported, please copy the experiment link, open a notebook or pe and paste
the link into the address bar.

Your computer screen will display useful information. Remember that the information on your computer screen is PRIVATE.
Tao ensure best results for yourself and accurate data for the experimenters, please DO NOT COMMUNICATE or interact with
other people on other media at any point during the experiment. If you have any questions, or need assistance of any kind,
please call +43-678-T80-7284 or use Zoom anytime during the experiment and one of the experimenters will help you
privately. We expect the entire experiment to take up to 60 minutes to complete.

Following these instructions, you will be asked to make some choices. There are no correct choices. Your choices depend on
your preferences and beliefs, so different participants will usually make different choices. You will be paid according to your
choices, so read these instructions carefully and think before you decide.

The Basic Idea

There are 5 mountains and each of them hides one type of gem, which can only be found by exploring the mountain.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain S
? ? ? ‘ ? ?
There are 3 types of gems hidden:

Diamonds \} Rubies o Topazes @

The exact values of the topazes, rubies, and diamonds vary across rounds but the diamonds are always worth more than the
rubies and the rubies are always worth more than the topazes:

N 4 > 0 > @

You choose which mountains to explore and the value of the gems you find are your earnings in dollars.

How the Gems Are Distributed

You will not know where the gems are hidden from the cutset. At the beginning of every round, a gem for each mountain
will be randomly drawn, so any gem could be hidden in any mountain.

For each mountain, there is a:

(7

* 60% chance it contains a topaz | .

» 20% chance it contains a ruby I

V4
» 20% chance it contains a diamond | . A1



These chances are the same for all ive mountains. Hence, there is some chance that there could be more than one diamond,
but there is also some chance that there could be no diamond. Further, even if, for example, the first two mountains happen
to contain a diamond, the chance that the third mountain contains a diamond is still 20%.

The Map

At the beginning of each round, one mountain will be randomly selected to be mapped and its gem will be uncovered to all
participants. Each participant will be able to see the same gem contained by the mountain. The mountain chosen for
mapping is random and changes in each round. Besides the map, no participant has any other initial information in Stage 1
on the location of gems.

How Participants Choose Mountains

In each round, participants choose which mountain to explore. The choice does not happen simultaneously, but participants
choose sequentially, one after the other, according to a random order that changes every round. You can choose to explore
any mountain you wish or select the mapped mountain. If you choose the same mountain chosen by other participants, each
of you will receive the gem'’s value uncovered. Similarly, if someone else chooses the same mountain that you previously
chose, you will still receive the full gem's value (and so will the other participant(s) that chose it).

To repeat, all participant have the same information in Stage 1 on the location of one of the gems.

Each Round Has 2 Stages

A round consists of 2 stages. At the beginning of a new round, gems are redrawn for each of the five mountains. The position
of gems will not be reset between the two stages in a round.

Then, one of the mountains randomly selected for mapping and the gem it hides is revealed to all players.

In Stage 1, all participants sequentially choose one mountain to explore. Before choosing a mountain, you will see which
mountains have been selected by the other participants in your group who chose before you, and how many participants
have selected each mountain. You can choose the same mountain or a different mountain.

At the end of Stage 1, the gems hidden in each mountain selected by all participants in Stage 1 are revealed, and you earn the
value of the gem hidden in the mountain you chose.

In Stage 2, you can again choose any of the same five mountains; that is you can either choose the same mountain of Stage 1
or switch to another one. The position of gems remains the same as in Stage 1, but this time you will also see the gems
located in the mountains revealed in Stage 11in addition to the mapped mountain.

At the end of Stage 2, the gems hidden in each mountain selected by all participants in Stage 2 are revealed, and you earn the
value of the gem hidden in the mountain you chose in Stage 2. You will also see your total earnings for the round which
equals the sum of the value of the gem you found in Stage 1 and the value of the gem you found in Stage 2.

Game Structure

The game is divided into 4 blocks, each made of 5 rounds, with each round encompassing the two stages described above. At
the beginning of each block, you will be randomly assigned to a new group of § participants, with whom you will play for the
entire block (5 rounds in total). After the block is complete, you will be randomly assigned to a new group of 5 participants.
Again, you will play for § rounds. This procedure will be repeated 4 times in total.

You will be reminded of this information in the top-right corner of your screen, as in the example below:

This is Block 1 of 4: You are in Round 3 of 5.

" Sage 1  Sagele ® Slageles » Sagal " Slagal
" Sagels " Sagele » Singel * Sl * Sl
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Payment

Fixed Participation Fee: You will earn a participation fee of $5.00 for participating in this experiment.

Additional Payment and Random Round: One round will be randomly selected for payment at the end of the experiment. You
will be paid and your earnings in that round as described above. Any of the 20 rounds (4 blocks with 5 rounds each) could be
the one selected, so you should treat each round as if it will be the one determining your payment.

This protocol of determining payments suggests that you should choose in each round as if it is the only round that
determines your payment as the dollar value of the gems you select will directly translate into your earnings.

Survey and Payment: In addition to the participation fee and the payment for the randomly selected round, you will perform
a small task at the very end of the experiment, and your earnings from this task will be paid to you.

You will be informed of your payment and the round chosen for payment at the end of the experiment. The $ you have
earned will be converted into Euros at an exchange rate of § 1 = € 0.67. Finally, after completing the experiment you will be
paid electronically via bank transfer.

Frequently Asked Questions

Ql: Is this some kind of psychology experiment with an agenda you haven't told us?

Az No, it is an economics experiment. If we do anything deceptive or don't pay you as described, then you can complain to
the University of Toronto Research Ethics Board and we will be in serious trouble. These instructions are meant to clarify
how you earn money and our interest is in seeing how people make decisions.

02: [s there a "correct” or "wrong” choice of action? Is this kind of a test?
A: No, your optimal choice depends on your preferences and beliefs and different people may hold different beliefs.

This button will be activated after 281 seconds. Please take your time to read through the instructions.

Instructions Quiz Experiment Questionnaire

You have successfully finished reading the instructions.

The quiz, consisting of 8 questions in total, follows.
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Quiz Time!

Please mark the following statements as correct/incorrect:

"QL: In each round, you will select two mountains (one in Stage 1, and one in Stage 2) and collect the gem that they hide. You

can choose the same mountain in both stages, or change after Stage 1.":
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:

"Q2: If more than one player selects the same mountain, they will all collect the full value of the gem." :

Correct

Incorrect

Read Instructions

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q3: At the beginning of a new round, the gems are redrawn for each mountain.":
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q4: No group member has any private initial information in Stage 1 on the location of gems." :
Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:
"Q5: The position of gems will not be reset between the two stages of a round.” :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q6: All group members select the mountains simultaneously.” :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:

"Q7: If another group member chose a mountain before you, you cannot choose it again." :

Correct

Incorrect

Read Instructions

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q8: At the end of the experiment, one round will be randomly selected for payment." :
Correct

Incorrect

Read Instructions
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Instructions Quiz Experiment Questionnaire

You have successfully finished the quiz.

The experiment follows: When you are ready please click "Next" to start the experiment.

Start of Block 1

This is Block 1 of 4 and each Block consists of 5 Rounds.

You have been randomly assigned to a new group of 5 participants.

Start of Round 1

You are now in Round 1 of 5 and each Round consists of 2 Stages.
The computer redrew the gems for each mountain.
No participant has any initial information on the location of gems.

In this round, for each mountain, there could be:

@ :a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
<7 : a diamond worth $11.00 with 20% chance

46

Next



‘This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

+ Stagelés + Stagel + Stagel + Stagel + Siagel
* Siagel * GStage 2 * Stage2 * Stagel * Stagel

In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
N } :a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.
It is NOT your turn yet, please wait.

3 players selected this
mountain

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

) seoo ? ? ?

AA A A A

?

This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

* Siage lé= + GStagel * Stagel * Siagel * Stagel
* Stagel * Stage2 * Stage? * Stagel * Snaged
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
« :a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.

Now it is YOUR TURN, please select a mountain.

4 players selected this

mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5
r= ==
2 I o se00 | ? ? ?
] I
] I
o o e o

Confirm your mountain choice
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Stage 1: Earnings
You selected Mountain 2 and found a o Thus, you earned $6.00 from your choice.

All discovered gems in addition to the mapped mountain and their locations are highlighted below.
These will also be displayed in Stage 2 when you make your next choice.

Click "Next" to proceed to the next stage.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? ) seo 2 ? ?

A M MA WA A

e

This is Block 1 of 4: You are in Round 1 of 5.

Stage 2

* Stagely + Stagel « Stagel + Stage 1 + Stagel
* Slageles *+ Stagez * Stagel + Stagel + Stagel

In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
N } :a diamond worth $11.00 with 20% chance

Now it is YOUR TURN, please select a mountain.

4 players selected this
mountain

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? L ? ? ?

M A A e

Confirm your mountain choice
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Stage 2: Earnings

You selected Mountain 2 and found a o Thus, you earned $6.00 from your choice.
Your total earnings from both stages in this round are $6.00 + $6.00 = $12.00

All discovered gems and their locations in both Stages are highlighted below.

Please click "Next" to proceed to the next round.

Mountain 1 Mountain 2 Mountain 3 Mountain 4

Mountain 5

? o $6.00 ? ?

A WA WA A

Read Instructions
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D.3 Data Condition with Intermediate Rivalry

Instructions

General Information

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to these instructions, you
can earn a significant amount of money paid to you at the end of the experiment via bank transfer.

To participate in this online experiment, you will need to use your notebook or personal computer (mobile phones are not
supported). If you are using a device that is not supported, please copy the experiment link, open a notebook or pc and paste
the link into the address bar.

Your computer screen will display useful information. Remember that the information on your computer screen is PRIVATE.
To ensure best results for yourself and accurate data for the experimenters, please DO NOT COMMUNICATE or interact with
other people on other media at any point during the experiment. If you have any questions, or need assistance of any kind,
please call +43-678-780-7284 or use Zoom anytime during the experiment and one of the experimenters will help you
privately. We expect the entire experiment to take up to 60 minutes to complete.

Following these instructions, you will be asked to make some choices. There are no correct choices. Your choices depend on
your preferences and beliefs, so different participants will usually make different choices. You will be paid according to your
choices, so read these instructions carefully and think before you decide.

The Basic Idea

There are 5 mountains and each of them hides one type of gem, which can only be found by exploring the mountain.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? ? ? ?

There are 3 types of gems hidden:

Diamonds % > Rubies o Topazes @

The exact values of the topazes, rubies, and diamonds vary across rounds but the diamonds are always worth more than the
rubies and the rubies are always worth more than the topazes:

‘7':-0:-@

You choose which mountains to explore and the value of the gems you find are your earnings in dollars.

50



How the Gems Are Distributed

You will not know where the gems are hidden from the outset. At the beginning of every round, a gem for each mountain
will be randomly drawn, so any gem could be hidden in any mountain.

For each mountain, there is a

« 60% chance it contains a topaz

+ 20% chance it contains a ruby

» 20% chance it contains a diamond

TS

These chances are the same for all five mountains. Hence, there is some chance that there could be more than one diamond,
but there is also some chance that there could be no diamond. Further, even if, for example, the first two mountains happen
to contain a diamond, the chance that the third mountain contains a diamond is still 20%.

The Map

At the beginning of each round, one mountain will be randomly selected to be mapped and its gemn will be uncovered to all
participants. Each participant will be able to see the same gem contained by the mountain. The mountain chosen for
mapping is random and changes in each round. Besides the map, no participant has any other initial information in Stage 1
on the location of gems.

How Participants Choose Mountains

In each round, participants choose which mountain to explore. The choice does not happen simultaneously, but participants
choose sequentially, one after the other, according to a random order that changes every round. You can choose to explore
any mountain you wish or select the mapped mountain. If you choose the same mountain already chosen by three other
participants, you will not receive the gem'’s value uncovered. Instead you will receive a value of zero. Similarly, if someone
else chooses the same mountain that you previously chose and you were among the first three to do so, you will receive the
full gem's value (and the other participant(s) that chose it will not receive the gem's value uncovered if they were not among
the first three participants to select that mountain).

To repeat, all participant have the same information in Stage 1 on the location of one of the gems.
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Each Round Has 2 Stages

A round consists of 2 stages. At the beginning of a new round, gems are redrawn for each of the five mountains. The position
of gems will not be reset between the two stages in a round.

In Stage 1, all participants sequentially choose one mountain to explore. Before choosing a mountain, you will see which
mountains have been selected by the other participants in your group who chose before you, and how many participants
have selected each mountain. You can choose the same mountain or a different mountain.

At the end of Stage 1, the gems hidden in each mountain selected by all participants in Stage 1 are revealed, and you earn the
value of the gem hidden in the mountain you chose.

In Stage 2, you can again choose any of the same five mountains; that is you can either choose the same mountain of Stage 1
or switch to another one. The position of gems remains the same as in Stage 1, but this time you will also see the gems
located in the mountains revealed in Stage 1 in addition to the mapped mountain.

At the end of Stage 2, the gems hidden in each mountain selected by all participants in Stage 2 are revealed, and you earn the
value of the gem hidden in the mountain you chose in Stage 2. You will also see your total earnings for the round which
equals the sum of the value of the gem you found in Stage 1 and the value of the gem you found in Stage 2.

Game Structure

The game is divided into 4 blocks, each made of 5 rounds, with each round encompassing the two stages described above. At
the beginning of each block, you will be randomly assigned to a new group of 5 participants, with whom you will play for the
entire block (5 rounds in total). After the block is complete, you will be randomly assigned to a new group of 5 participants.
Again, you will play for 5§ rounds. This procedure will be repeated 4 times in total.

You will be reminded of this information in the top-right corner of your screen, as in the example below:

This is Block 1 of 4: You are in Round 3 of 5.

* Stagele * Siagele” & Siagele & Stagel * Sangel
* Stageie * Stage2e * Stagel * Staged * Smgel

Payment

Fixed Participation Fee: You will earn a participation fee of $5.00 for participating in this experiment.

Additional Payment and Random Round: One round will be randomly selected for payment at the end of the experiment. You
will be paid and your earnings in that round as described above. Any of the 20 rounds (4 blocks with 5 rounds each) could be
the one selected, so you should treat each round as if it will be the one determining your payment.

This protocol of determining payments suggests that you should choose in each round as if it is the only round that
determines your payment as the dollar value of the gems you select will directly translate into your earnings.

Survey and Payment: In addition to the participation fee and the payment for the randomly selected round, you will perform
a small task at the very end of the experiment, and your earnings from this task will be paid to you.

You will be informed of your payment and the round chosen for payment at the end of the experiment. The § you have

earned will be converted into Euros at an exchange rate of § 1 = € 0.67. Finally, after completing the experiment you will be
paid electronically via bank transfer.
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Frequently Asked Questions

Q1: Is this some kind of psychology experiment with an agenda you haven't told us?

A: No, it is an economics experiment. If we do anything deceptive or don't pay you as described, then you can complain to
the University of Toronto Research Ethics Board and we will be in serious trouble. These instructions are meant to clarify
how you earn money and our interest is in seeing how people make decisions.

Q2: Is there a "correct” or "wrong" choice of action? Is this kind of a test?
Az No, your optimal choice depends on your preferences and beliefs and different people may hold different beliefs.

This button will be activated after 281 seconds. Please take your time to read through the instructions.

Instructions Quiz Experiment Questionnaire

You have successfully finished reading the instructions.

The quiz, consisting of 8 questions in total, follows.

Quiz Time!

Please mark the following statements as correct/incorrect:

"QL: In each round, you will select two mountains (one in Stage 1, and one in Stage 2) and collect the gem that they hide. You
can choose the same mountain in both stages, or change after Stage 1.":

Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:

"Q2: If more than one player selects the same mountain, all players will always collect the full value of the gem." :

Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q3: At the beginning of a new round, the gems are redrawn for each mountain.":
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:

"Q4: No group member has any private initial information in Stage 1 on the location of gems." :

Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q5: The position of gems will not be reset between the two stages of a round.” :
Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:
"Q6: All group members select the mountains simultaneously.” :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q7: If another group member chose a mountain before you, you cannot choose it again.":
Correct

Incorrect

Read Instructions

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q8: At the end of the experiment, one round will be randomly selected for payment.” :
Correct

Incorrect

Read Instructions
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Instructions Quiz Experiment Questionnaire

You have successfully finished the quiz.

The experiment follows: When you are ready please click "Next" to start the experiment.

Start of Block 1

This is Block 1 of 4 and each Block consists of 5 Rounds.

You have been randomly assigned to a new group of 5 participants.

Start of Round 1

You are now in Round 1 of 5 and each Round consists of 2 Stages.
The computer redrew the gems for each mountain.
No participant has any initial information on the location of gems.

In this round, for each mountain, there could be:

@ :a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
<7 : a diamond worth $11.00 with 20% chance
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This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

+ Stagelss + Stagel + Stagel + Stagel + Stagel
+ Stage? * Stage? * Stage2 * StageZ * Stage?
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
\)r : a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.

It is NOT your turn yet, please wait.

2 players selected this

mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5
? ? W s ? ?

A M WA WA A

This is Block 1 of 4: You are in Round 1 of 5.

Stage 1

+ Stagelds * Stagel * Stagel * Stagel + Stagel
* Stage 2 * Stage 2 * Stage 2 * Stage 2 * Stage 2
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
\7: a diamond worth $11.00 with 20% chance

The location of gems is random and no participant has any initial information where each gem is hidden.

Now it is YOUR TURN, please select a mountain.

3 players selected this

mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5
P o= = m
? ? |\ sueo ? ?

Y YERY S Sy

Read Instructions Confirm your mountain choice
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Stage 1: Earnings

You selected Mountain 3 and found a < J. Thus, you earned $0.00 from your choice because you were not among the first
three players to select this mountain.

All discovered gems in addition to the mapped mountain and their locations are highlighted below.
These will also be displayed in Stage 2 when you make your next choice.

Click "Next" to proceed to the next stage.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? o $6.00 \7 $11.00 ? ?

A A A A A

=

This is Block 1 of 4: You are in Round 1 of 5.

Stage 2

* Stagelv = Stagel = Stagel = Stagel = Stagel
+ Stage2s  + Stage2 + Sge2 + Sge2 + Stage2
In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
0 : a ruby worth $6.00 with 20% chance
\)V: a diamond worth $11.00 with 20% chance

Now it is YOUR TURN, please select a mountain.

3 players selected this

mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5
P o o o
? 1 o §6.00 1 \7 $11.00 2 ?

PR NErSErNErS

Read Instructions Confirm your mountain choice
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Stage 2: Earnings

You selected Mountain 2 and found a o . Thus, you earned $6.00 from your choice.
Your total earnings from both stages in this round are $0.00 + $6.00 = $6.00

All discovered gems and their locations in both Stages are highlighted below.

Please click "Next" to proceed to the next round.

Mountain 1 Mountain 2 Mountain 3 Mountain 4

Mountain 5

? o $6.00 \_7 $1L.00 ?

AA | M A A
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D.4 No-Data Condition with Extreme Rivalry

Instructions

General Information

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to these instructions, you
can earn a significant amount of money paid to you at the end of the experiment via bank transfer.

To participate in this online experiment, you will need to use your notebook or personal computer (mobile phones are not
supported). If you are using a device that is not supported, please copy the experiment link, open a notebook or pc and paste
the link into the address bar.

Your computer screen will display useful information. Remember that the information on your computer screen is PRIVATE.
To ensure best results for yourself and accurate data for the experimenters, please DO NOT COMMUNICATE or interact with
other people on other media at any point during the experiment. If you have any questions, or need assistance of any kind,
please call +43-678-780-7284 or use Zoom anytime during the experiment and one of the experimenters will help you
privately. We expect the entire experiment to take up to 60 minutes to complete.

Following these instructions, you will be asked to make some choices. There are no correct choices. Your choices depend on
your preferences and beliefs, so different participants will usually make different choices. You will be paid according to your
choices, so read these instructions carefully and think before you decide.

The Basic Idea

There are 5 mountains and each of them hides one type of gem, which can only be found by exploring the mountain.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? ? ? ?

There are 3 types of gems hidden:

Diamonds % > Rubies o Topazes @

The exact values of the topazes, rubies, and diamonds vary across rounds but the diamonds are always worth more than the
rubies and the rubies are always worth more than the topazes:

‘7':-0:-@

You choose which mountains to explore and the value of the gems you find are your earnings in dollars.
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How the Gems Are Distributed

You will not know where the gems are hidden from the outset. At the beginning of every round, a gem for each mountain
will be randomly drawn, so any gem could be hidden in any mountain.

For each mountain, there is a

« 60% chance it contains a topaz

+ 20% chance it contains a ruby

» 20% chance it contains a diamond

TS

These chances are the same for all five mountains. Hence, there is some chance that there could be more than one diamond,
but there is also some chance that there could be no diamond. Further, even if, for example, the first two mountains happen
to contain a diamond, the chance that the third mountain contains a diamond is still 20%.

How Participants Choose Mountains

In each round, participants choose which mountain to explore. The choice does not happen simultaneously, but participants
choose sequentially, one after the other, according to a random order that changes every round. You can choose to explore
any mountain you wish or select the mapped mountain. If you choose the same mountain already chosen by other
participants, you will not receive the gem's value uncovered. Instead you will receive a value of zero. Similarly, if someone
else chooses the same mountain that you previously chose and you were the first to do so, you will receive the full gem's
value (and the other participant(s) that chose it will not receive the gem's value uncovered).

To repeat, no participant has any initial information in Stage 1 on the location of gems.

Each Round Has 2 Stages

A round consists of 2 stages. At the beginning of a new round, gems are redrawn for each of the five mountains. The position
of gems will not be reset between the two stages in a round.

In Stage 1, all participants sequentially choose one mountain to explore. Before choosing a mountain, you will see which
mountains have been selected by the other participants in your group who chose before you, and how many participants
have selected each mountain. You can choose the same mountain or a different mountain.

At the end of Stage 1, the gems hidden in each mountain selected by all participants in Stage 1 are revealed, and you earn the
value of the gem hidden in the mountain you chose.

In Stage 2, you can again choose any of the same five mountains; that is you can either choose the same mountain of Stage 1
or switch to another one. The position of gems remains the same as in Stage 1, but this time you will also see the gems
located in the mountains revealed in Stage 1 in addition to the mapped mountain.

At the end of Stage 2, the gems hidden in each mountain selected by all participants in Stage 2 are revealed, and you earn the
value of the gem hidden in the mountain you chose in Stage 2. You will also see your total earnings for the round which
equals the sum of the value of the gem you found in Stage 1 and the value of the gem you found in Stage 2.
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Game Structure

The game is divided into 4 blocks, each made of 5 rounds, with each round encompassing the two stages described above. At
the beginning of each block, you will be randomly assigned to a new group of § participants, with whom you will play for the
entire block (5 rounds in total). After the block is complete, you will be randomly assigned to a new group of 5 participants.
Again, you will play for 5 rounds. This procedure will be repeated 4 times in total.

You will be reminded of this information in the top-right corner of your screen, as in the example below:

This is Block 1 of 4: You are in Round 3 of 5.

» Sisge i * Simge v ® Diage ] = * Siagel * Samgel
* Stage I e ® Singe I * Sipgel * Stagel * Sipge

Payment

Fixed Participation Fee: You will earn a participation fee of $5.00 for participating in this experiment.

Additional Payment and Random Round: One round will be randomly selected for payment at the end of the experiment. You

will be paid and your earnings in that round as described above. Any of the 20 rounds (4 blocks with 5 rounds each) could be
the one selected, so you should treat each round as if it will be the one determining your payment.

This protocol of determining payments suggests that you should choose in each round as if it is the only round that
determines your payment as the dollar value of the gems you select will directly translate into your earnings.

Survey and Payment: In addition to the participation fee and the payment for the randomly selected round, you will perform
a small task at the very end of the experiment, and your earnings from this task will be paid to you.

You will be informed of your payment and the round chosen for payment at the end of the experiment. The § you have
earned will be converted into Euros at an exchange rate of § 1 = € 0.67. Finally, after completing the experiment you will be
paid electronically via bank transfer.

Frequently Asked Questions

Q1: Is this some kind of psychology experiment with an agenda you haven't told us?

Az No, it is an economics experiment. If we do anything deceptive or don't pay you as described, then you can complain to
the University of Toronto Research Ethics Board and we will be in serious trouble. These instructions are meant to clarify
how you earn money and our interest is in seeing how people make decisions.

Q2: Is there a "correct” or "wrong” choice of action? Is this kind of a test?
A: No, your optimal choice depends on your preferences and beliefs and different people may hold different beliefs.

This button will be activated after 281 seconds. Please take your time to read through the instructions.
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Instructions Quiz Experiment Questionnaire

You have successfully finished reading the instructions.

The quiz, consisting of 8 questions in total, follows.

Quiz Time!

Please mark the following statements as correct/incorrect:

"QL: In each round, you will select two mountains (one in Stage 1, and one in Stage 2) and collect the gem that they hide. You
can choose the same mountain in both stages, or change after Stage 1.":

Correct

Incorrect

Read Instructions

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q2: If more than one player selects the same mountain, all players will always collect the full value of the gem.":
Correct

Incorrect

e

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q3: At the beginning of a new round, the gems are redrawn for each mountain.”:
Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:

"Q4: No group member has any private initial information in Stage 1 on the location of gems." :

Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q5: The position of gems will not be reset between the two stages of a round." :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:
"Q6: All group members select the mountains simultaneously.” :
Correct

Incorrect

Quiz Time!

Please mark the following statements as correct/incorrect:

"Q7: If another group member chose a mountain before you, you cannot choose it again." :

Correct

Incorrect

Read Instructions
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Quiz Time!

Please mark the following statements as correct/incorrect:
"Q8: At the end of the experiment, one round will be randomly selected for payment.” :
Correct

Incorrect

Read Instructions

Instructions Quiz Experiment Questionnaire

You have successfully finished the quiz.

The experiment follows: When you are ready please click "Next" to start the experiment.

Start of Block 1

This is Block 1 of 4 and each Block consists of 5 Rounds.

You have been randomly assigned to a new group of 5 participants.
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Start of Round 1

You are now in Round 1 of 5 and each Round consists of 2 Stages.

The computer redrew the gems for each mountain.

No participant has any initial information on the location of gems.

In this round, for each mountain, there could be:

@ :a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
)y :a diamond worth $11.00 with 20% chance

Stage 1

In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o - a ruby worth $6.00 with 20% chance
)y :a diamond worth $11.00 with 20% chance

This is Block 1 of 4: You are in Round 1 of 5.

©

* Stage] 4= = Stagel
* Stage2 * Stagel

= Stagel = Stagel
* Stagel * Stage2

The location of gems is random and no participant has any initial information where each gem is hidden.

It is NOT your turn yet, please wait.

1 player selected this 1player selected this
mountain mountain
Mountain 1 Mountain 2 Mountain 3
? ? ?

Al A A
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Mountain 5

?

aa

?

A

= Stagel
* Stage2
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Stage 1

In this round, for each mountain, there could be:

@ : a topaz worth $1.00 with 60% chance
o :a ruby worth $6.00 with 20% chance
<)y : a diamond worth $11.00 with 20% chance

This is Block 1 of 4: You are in Round 1 of 5.

» Stagel#= = Stagel + Stagel + Stagel + Stagel

Stage 2 * Stage * Stage? * Stage? * Stage?

The location of gems is random and no participant has any initial information where each gem is hidden.

Now it is YOUR TURN, please select a mountain.

1player selected this 1player selected this
mountain mountain
Mountain 1 Mountain 2 Mountain 3
- e o
? ? ?

aa

PR

Stage 1: Earnings

1 player selected this 1 player selected this
mountain mountain
Mountain 4 Mountain 5
? ?

A a8

Confirm your mountain choice

You selected Mountain 3 and found a « . Thus, you earned $0.00 from your choice because you were not the first player to

select this mountain.

All discovered gems in addition to the mapped mountain and their locations are highlighted below.
These will also be displayed in Stage 2 when you make your next choice.

Click "Next" to proceed to the next stage.

Mountain 1 Mountain 2 Mountain 3

P o

A

@ $L00 ?

A A8
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This is Block 1 of 4: You are in Round 1 of 5.

Stage 2

+ Stagele + Stagel + Stagel + Stagel + Stagel
+ Stage? = + Stage? + Stage2 + Stage2 + Stage?
In this round, for each mountain, there could be:
@ : a topaz worth $1.00 with 60% chance
o : a ruby worth $6.00 with 20% chance
)y : a diamond worth $11.00 with 20% chance
Now it is YOUR TURN, please select a mountain.
1 player selected this 1player selected this 1 player selected this 1player selected this
mountain mountain mountain mountain
Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

? \) $1L.00 @ $1.00 @ $1.00

A M A A A

Read Instructions Confirm your mountain choice

Stage 2: Earnings

You selected Mountain 1and found a @ Thus, you earned $1.00 from your choice.
Your total earnings from both stages in this round are $0.00 + $1.00 = $1.00

All discovered gems and their locations in both Stages are highlighted below.

Please click "Next" to proceed to the next round.

Mountain 1 Mountain 2 Mountain 3 Mountain 4 Mountain 5

@ $L00 o $6.00 W suw @ $1.00 @ $1.00

Ah | MM A A e
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D.5 Questionnaire and Risk-Preferences Elicitation Task

Instructions Quiz Experiment Questionnaire

You have successfully finished the main part of the experiment.

A brief questionnaire together with a short task follows: When you are ready please click "Next".

Please answer the following questions

Your answers will be kept confidential and will not affect your earnings for today's experiment.

Please state your age:

Please state your gender:

[

Please state your student type:
b

Please state your country of origin:

Please state your degree and field of study:
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Please briefly explain, in your own words, the rules of today's experiment:

Please briefly describe how you reached your decisions in this experiment:

Please briefly describe how, in your opinion, other participants reached their decisions in this experiment:

Next
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Instructions

Thank you for your participation so far. In the last task of the experiment, you will earn an additional reward based on a set
of 10 choice problems.

How does it work?

The Choice: You will be asked to choose between two options, "Option A" and "Option B" where:
- "Option A" always pays $4.00 with probability p and $3.20 otherwise.
- "Option B" always pays $7.70 with probability p and $0.20 otherwise.

Repeated Choices:

- You will be asked to make a choice between "Option A" and "Option B" not once, but ten times where
p will increase from 10% to 100%, 10% at a time.

For example, the first choice will have p=10% and you will choose whether you prefer "Option A"
(4.00 with a 10% chance or $3.20 otherwise) or "Option B" ($7.70 with a 10% chance or $0.20 otherwise).

- Each successive choice will increase p by 19 percentage points until the last choice where "Option A" will
pay $4.00 with certainty, and "Option B" will pay $7. 70 with certainty.

Note: Once you switch from choosing "Option A" to "Option B", it makes sense that you will continue to choose "Option B" in
all consecutive choice problems. For example, if you prefer "Option B" when p=80%, then it makes sense to prefer "Option B"
when p=90% and when p=100%, since "Option B" is even more attractive in these choice problems.

Therefore, we have designed the interface so that you must either (a) always choose "Option A" or "Option B" for all 10 choice
problems or (b) if you switch to "Option B" for a given probability p, then you must choose "Option B" for all the following
choices as well.

You can adjust your choices as many times as you wish. When you are ready to submit your choices, you can click on the
"Next" button at the bottom of the page.

Payment

The computer will randomly select one of the 10 choice problems and pay you according to your choice in that problem
where the computer will decide the outcome based on the value of p.

Next
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Please Choose Between "Option A" and "Option B

on Every Line

Option A

$4.00 with a chance of 103,
$3.20 otherwise

$4.00 with a chance of 205,
$3.20 otherwise

$4.00 with a chance of 30%,
$3.20 otherwise

$4.00 with a chance of 465,
$3.20 otherwise

$4.00 with a chance of 505,
$3.20 otherwise

$4.00 with a chance of 665,
$3.20 otherwise

$4.00 with a chance of 765,
$3.20 otherwise

$4.00 with a chance of 80%,
$3.20 otherwise

$4.00 with a chance of 963,
$3.20 otherwise

$4.00 with a chance of 1003,

$3.20 otherwise
Read Instructions
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Option B

$7.70 with a chance of 10%,
$0.20 otherwise

$7.70 with a chance of 205,
$0.20 otherwise

$7.70 with a chance of 303,
$0.20 otherwise

$7.70 with a chance of 46,
$0.20 otherwise

$7.70 with a chance of 50,
$0.20 otherwise

$7.70 with a chance of 60,
$0.20 otherwise

$7.70 with a chance of 705,
$0.20 otherwise

$7.70 with a chance of 803,
$0.20 otherwise

$7.70 with a chance of 905,
$0.20 otherwise

$7.70 with a chance of 100%,
$0.20 otherwise

Next



D.6 Payment Information

Thank you for participating in this experiment!

Your payoffs for this experiment are as follows:

Main ¢ Round 1 of Block 1 was randomly selected for payment.
Experiment: ¢ In Stage 1, you found a « 7 and received $11.00 and in Stage 2, you found a 7 and received
$11.00

e Thus, your total payoff is $11.00 + $11.00 = $22.00

Last Task of o The following choice problem was randomly selected:

Experiment:
Option A Option B
$4.00 with a probability of 10%, . $7.70 with a probability of 10%,
$3.20 otherwise $0.20 otherwise

¢ Asindicated above, you chose Option A. The computer drew a random number to determine
your payoff according to the chances specified.
¢ Your payoff is $3.20

Participation Fee: e You earned a fee of $5.00

In total, you earned $22.00 + $3.20 + $5.00 = $30.20 from your choices.
In euros, this corresponds to: €20.13

Please click Next to upload your bank details.

Next
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